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RECOMMENDED READING 1

Recommended Reading

Since this course covers material from different subject areas (including aerodynamics,
thermodynamics, gas turbines, and specialized topics on internal combustion engines and
rocket-propulsion), we are relying on different references. Below is a list of complementary
reading material for this course; all books are on reserve at the library:

• Thermodynamics:
– Cengel & Boles: Thermodynamics: An Engineering Approach, McGraw-

Hill [12];

– Reynolds & Perkins: Engineering Thermodynamics, McGraw-Hill [55].

• Aerodynamics:
– Anderson: Introduction to Flight, McGraw-Hill [1];

– Anderson: Modern Compressible Flow, McGraw-Hill [2].

• Gas Turbine Engines
– Mattingly: Elements of Propulsion: Gas Turbines and Rockets, AIAA Ed.

Series. [45] (Recommended Text)

– Saravanamuttoo, Rogers, Cohen, & Straznicky: Gas Turbine Theory, Pear-
son [56]

– Hill & Peterson: Mechanics and Thermodynamics of Propulsion, Addison-
Wesley [29];

– Lefebvre: Gas Turbine Combustion, Taylor & Francis [39];

– Farokhi: Aircraft Propulsion, Wiley [20];

– Cumpsty: Jet Propulsion – A Simple Guide to the Aerodynamic and Ther-
modynamic Design and Performance of Jet Engines, Cambridge University
Press [16];

– Rolls Royce: The Jet Engine – A Complete Overview of the Modern Gas
Turbine [62].

– Dixon & Hall: Fluid Mechanics and Thermodynamics of Turbomachinery,
Butterworth-Heinemann (also available as online resource:
http://www.sciencedirect.com/science/book/9780124159549)

– Online resource to Jane’s aero engines: https://janes.ihs.com

• Internal Combustion Engines:
– Heywood: Internal Combustion Engine Fundamentals, McGraw-Hill [28];

– Stone: Introduction to Internal Combustion Engines, Palgrave MacMillan [60];

– Lumley: Engines – An Introduction, Cambridge University Press [41].

• Rocket Propulsion
– Sutton & Biblarz: Rocket Propulsion Elements, Wiley [61];

http://www.sciencedirect.com/science/book/9780124159549
https://janes.ihs.com


– Huzel & Huang: Modern Engineering for Design of Liquid-Propellant Rocket
Engines, American Institute of Aeronautics and Astronautics [30].
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Nomenclature

Symbol Description Value Units

A Generic chemical species - -

A Reaction frequency factor (order m) - mol1−m-Lm−1-s−1

A Area - m2

D Diameter - m
EA Activation energy - J/mol
E Internal energy - J

G Distance function - -
H Enthalpy - J
I Identity tensor - -

K Equilibrium constant - -
N Number of a generic quantity - -

N Number of molecules/atoms - -
P Probability density function - -
Q Prior probability density function - -

Q Heat Release - J
R Gas constant J/(kg-K)

R Correlation function - -

S Entropy - J/K
T Temperature - K

V Volume - m3

V α Diffusion velocity of species α - m/s
W Molecular weight - g/mol

W Wiener Process - −
Xα Mole fraction of species α - -
Yα Mass fraction of species α - -

Z Mixture fraction - -
Z Compressibility - -
c Speed of sound - m/s

c{p,v} Specific heat capacity at constant {pressure,
volume}

- J/(kg-K)

e Specific internal energy - J/kg

ê Unit vector - -
g Gravitational acceleration - m/s2

h Specific enthalpy - J/kg

j
α

Diffusion flux of species α - kg/m2-s

k Rate constant (order m) - mol1−m-Lm−1-s−1

kB Boltzmann constant 1.3806× 10−23 J/K

m Mass - kg

n Number of moles - mol
n̂ Normal vector - -

p Pressure - Pa

q Heat flux vector - W/m3

s Flame speed - m/s
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s Specific entropy - J/(kg-K)
u Velocity vector - m/s

v Specific volume - m3/kg
wα Volumetric reaction rate of species α - 1/m3-s

y Element mass fraction - -
αα Diffusivity of species α - m2/s
αT Thermal diffusivity - m2/s

χ Scalar dissipation rate - 1/s
δ Dirac delta function - -
δ Characteristic thickness - m

ε Turbulent dissipation rate - m2/s3

η Kolmogorov scale - m
γ Specific heat ratio - -

λ Thermal conductivity - W/(m-K)
λg Taylor microscale - m
Λ Burning rate eigenvalue - m/s

κ Bulk viscosity - Pa-s
κ Wavenumber - ,−1

ρ Density - kg/m3

µ Dynamic Viscosity - Pa-s
ν Kinematic Viscosity - m2/s

να, ν′α, ν
′′
α Stoichiometric coefficient, mole number of

species α

- -

ω̇α Production rate of species α - 1/s

φ Equivalence ratio - -

Φ Two-point autocorrelation function - -
σ Viscous stress tensor - Pa

τ Timescale - s
ξ Generic variable - -

ζ Generic variable - -
ψ Streamfunction - m2/s
Σ Flame surface density - -

(̂·) Unit vector - -

(·) Mean quantity - -
(·)′ Fluctuating quantity - -

(·)0 At reference conditions - -

(·)0 At reference conditions - -
(·)a Activation - -
(·)f Forward reaction (k) - -

(·)f Formation (h) - -

(·)l Reaction indicator - -

(·)t Turbulent - -
(·) Generic vector - -

(·) Generic tensor - -

˙(·) Rate (time derivative) - 1/s

(̃·) Favre average - -
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〈·〉 Ensemble average - -
(·)F Fuel stream - -

(·)J Jet - -
(·)L Laminar - -

(·)O Oxidizer stream - -
(·)P Products - -
(·)R Radiation - -

(·)st Stoichiometric conditions - -
(·)b Burned gas (u) - -
(·)b Reverse reaction (k) - -

(·)s Sensible (h); - -
(·)s Species (N) - -
(·)m Molar - -

(·)t Time (∂) - -
(·)t Total(h); - -
(·)u Unburned gas - -

(·)α Species indicator - -
(·)β Species indicator - -

F Fuel - -

H Heaviside function - -
L General transport operator - -

M Markstein Length - m

O Oxidizer - -
U Velocity sample space variable - -

Y Mass fraction sample space variable - -

R Universal gas constant 8.314 J/(mol K)
Re Reynolds number - -

Ce Heat release parameter - -

Da Damköhler number - -
Ec Eckhart number - -

Fr Froude number - -
Le Lewis number - -
M Mach number - -

Sc Schmidt number - -
Ze Zeldovich number - -





CHAPTER 1

Course Information

1.1. Course Organization

The goal of this course is to integrate concepts from turbulence, combustion, and mathe-
matics to give the reader a thorough understanding of turbulent combustion. To accomplish
this, the course has the following outline:

(1) Governing Equations
• Key definitions
• Conservation equations
• Transport models
• Chemical models
• State equations

(2) Mathematical Analysis of Simple Flames
• Nondimensionalization
• Important modeling simplifications

(3) Review of Mathematical and Combustion-Physical Concepts
• Turbulence: filtering, averaging, statistical analysis
• Combustion: premixed and non-premixed

(4) Combustion Modeling
• Topology-based combustion modelling
• Topology-free combustion models
• Pollutants and emissions
• Combustion instabilities
• Spray combustion

(5) Selected topics
• RANS
• LES
• DNS
• Heterogeneous combustion
• Plasma-assisted combustion
• Flame stabilization

7



8 1. COURSE INFORMATION

1.2. Computing Environment

During the course of this class, it will be instructive to utilize the Cantera software
package to compute a variety of quantities relevant to turbulent combustion. It is highly
recommended that this package be installed within the Anaconda python distribution to
ensure cross-platform operability as well as consistency in results, syntax, and debugging.
Steps to install and test are as follows:

(1) Download and install the latest version of the Anaconda python distribution.
(2) Execute the following command to install Cantera and other dependencies within

a virtual environment called ”canpy” running Python 2.7.

conda create -n canpy -c cantera cantera ipython matplotlib

jupyter python=2.7

(3) You can now activate this environment at any point by running,

source activate canpy

or deactivate by running,

source deactivate

(4) Additional instructions on installing Cantera can be found here.
Once Cantera has installed successfully, you can test package operability by

executing a simple premixed flame calculation in the Jupyter notebook provided
in Sec. 8.1. Execute the command,

jupyter notebook

select “Notebook” from under the “New” menu, and you will be presented with
a blank notebook. You can then insert the provided code, which will import the
Cantera package, define several useful functions for interacting with the solution
object, print gas parameters, and plot the structure of a stoichiometric premixed
flame. Additional documentation can be found on the Cantera website.

http://www.cantera.org/docs/sphinx/html/index.html
https://www.continuum.io/downloads
http://www.cantera.org/docs/sphinx/html/install.html
http://www.cantera.org/docs/sphinx/html/index.html


CHAPTER 2

Definitions and Governing Equations

Chemically reacting flows are fully described by conservation equations for mass, mo-
mentum, species, and energy with the state equation relating thermodynamic properties to
one another. In the following, we present key definitions, introduce important combustion
concepts, and define governing equations together with constitutive relations that form the
foundation of combustion science.

2.1. General Definitions

2.1.1. Equation of State. An equation of state defines a constitutive relation between
two or more thermodynamic variables. The most common form is the ideal gas law. The
ideal gas law can be expressed in different, but equivalent forms, as:

Mass-specific: pV = mRT , (2.11)

Mole-specific: pV = nRT , (2.12)

Molecule/atom-specific: pV = NkBT , (2.13)

where R is the universal gas constant, and R = R/W is the gas constant of the mixture.
The ideal gas law, Eqs. (2.11)–(2.13), is applicable for conditions such that the distance

between molecules is sufficiently large and no intermolecular forces exists between molecules.
As an example of a situation wherein this equation of state would not apply, consider the
case of rocket combustion, where high-pressure fuel injection requires consideration of real-
fluid effects. A common form for these real-fluid state equations is the cubic state equation,

p =
RT

v − b −
Θ(v − η)

(v − b)(v2 + δv + ε)
, (2.14)

where Θ, b, η, ε, and δ are parameters depending on temperature, mixture, and critical
conditions [51]. To evaluate the deviation from the ideal-gas conditions, the compressibility
Z is commonly introduced:

Z =
pV

mRT
. (2.15)

9
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Figure 2.11 Thermodynamic state plane and supercritical state struc-
ture. The Widom line is an extension to the coexistence line at critical pres-
sure, and marks the crossover between supercritical liquidlike and gaslike
states. The dashed line where the compressibility Z = 0.95 denotes the
transition to an ideal gas.

where Z = 1 denotes an ideal gas, and conditions for Z > 1 or Z < 1 require the consid-
eration of real-fluid effects. The region where the ideal gas law is approximately valid is
shown in Fig. 2.11. Often, the real-fluid state equations are explicitly written in terms of
Z.

2.1.2. Mass Fraction and Mole Fraction. We can define the mass fraction of species
α, Yα as,

Yα =
ρα
ρ

=
mα

m
, (2.16)

where m =
∑Ns
α=1mα is the total mass of the species.

The mole fraction of species α, Xα, is defined as,

Xα =
nα
n
, (2.17)
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where n =
∑Ns
α=1 nα is the number of moles of all species. Conservation of mass and

conservation of moles require that,

Ns∑
α=1

Yα =

Ns∑
α=1

Xα = 1. (2.18)

By using the ideal gas law from Eq. (2.12), we can define the partial pressure pα of species
α as,

pαV = nαRT. (2.19)

By taking the ratio between Eq. (2.19) and Eq. (2.12), we obtain

pα
p

=
nα
n
→ pα = Xαp, (2.110)

which is Dalton’s Law. Dalton’s law of partial pressure can be expressed in both mole-based
and mass-based forms,

p =

Ns∑
α=1

pα =

Ns∑
α=1

Xαp (Mole-specific) (2.111a)

ρ =

Ns∑
α=1

ρα =

Ns∑
α=1

Yαρ (Mass-specific). (2.111b)

We can also write the mass of a particular species as,

mα = nαWα, (2.112)

and the mean molar mass W can be expanded as,

1

W
=

1

W

Ns∑
α=1

nα
n

=

Ns∑
α=1

nαWα

nW

1

Wα
=

Ns∑
α=1

mα

m

1

Wα
=

Ns∑
α=1

Yα
Wα

. (2.113)

Using this result, we can relate the mass fraction and mole fraction via the mixture molar
mass,

W =

Ns∑
α=1

XαWα =

(
Ns∑
α=1

Yα
Wα

)−1

. (2.114)

Further, some simple algebra using Eq. (2.112) relates the mass and mole fractions,

Xα =
nα
n

=
mα/Wα∑Ns
α=1mα/Wα

=
Yα/Wα∑Ns
α=1 Yα/Wα

=
WYα
Wα

. (2.115)

The ability to relate mass and mole fractions can become quite useful in intuitively express-
ing the results of much of the analysis we will present.
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2.2. Stoichiometry and Equivalence Ratio

The generic form of a chemical reaction can be written as

Ns∑
α=1

ν′αAα 

Ns∑
α=1

ν′′αAα, (2.21)

with Aα denoting the chemical species α, ν′ and ν′′ the stoichiometric coefficients for
reactants and products, and να = ν′′α−ν′α the net stoichiometric coefficient. In this context,
we would like to emphasize the difference between the stoichiometric coefficient (ν′, ν′′) and
mole number (n): While the stoichiometric coefficient is determined by the law of mass
action through a chemical conversion reaction, the mole-number is a local quantity that
can change depending on flow-field conditions. Only for the condition that nα = nα, st,
that is stoichiometric conditions, are both quantities identical.

We can now consider a generic stoichiometric reaction of fuel F and oxidizer O forming
a product P,

ν′FF + ν′OO
 νPP, (2.22)

by defining the mole ratio, which is equal to the ratio of stoichiometric coefficients in the
unburned mixture (denoted with subscript “u”). With Eq. (2.112), it follows that,

nO,u

nF,u

∣∣∣∣
st

=
XO,u

XF,u

∣∣∣∣
st

=
ν′O
ν′F

(2.23)

mO,u

mF,u

∣∣∣∣
st

=
YO,u

YF,u

∣∣∣∣
st

=
ν′OWO

ν′FWF
≡ ν, (2.24)

where ν is the stoichiometric fuel-air ratio. From these definitions, we can derive the
equivalence ratio, which is the standard quantity defining the relative amounts of fuel and
oxidizer in a reacting flow,

φ =
mF/mO

(mF/mO)st
=

YF,u/YO,u

(YF,u/YO,u)st
= ν

YF,u

YO,u
. (2.25)

More commonly, we consider the equivalence ratio φ, which is defined with respect to the
fuel and air mixture,

φ =
mF/mair

(mF/mair)st
. (2.26)
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Note that the ranges of φ are as follows,

φ


< 1 Fuel lean

= 1 Stoichiometric

> 1 Fuel rich

. (2.27)

2.3. Mixture Fraction

Fuel

Oxidizer 

Products

F

O

P

Figure 2.31 Schematic of a two-stream combustion chamber.

The mixture fraction Z describes the local equivalence ratio in the mixture. This quan-
tity physically describes the amount of local mixture that originated from the fuel stream,
and is introduced as a non-dimensional quantity with the specific purpose of describing
non-premixed flames via a conserved scalar. Consider a two-stream non-premixed burner
system in which the fuel is injected through stream F and the oxidizer is injected through
stream O as in Fig. 2.31,

Fuel + Oxidizer→ Products

mFF +mOO ⇀ (mF +mO)P (R1)

1kg F +

(
mO

mF

)
st

O ⇀

(
1 +

(
mO

mF

)
st

)
P, (R2)

For this twos-stream system, we can define the coupling function ξ

ξ = νYF − YO , (2.32)

which measures the deviation from the local stoichiometric. From this, we can introduce
the mixture fraction Z,

Z =
ξ∗ − ξO
ξF − ξO

; Z ∈ [0, 1]. (2.33)

which provides a normalization so that Z = 0(ξ∗ → ξO) defines the condition in the oxidizer
stream and Z = 1(ξ∗ → ξF) defines the condition in the fuel stream. Qualitatively, the
mixture fraction can be considered as quantity that represents that normalized mass of
material originating from the fuel stream.
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Unburned
Burned

Figure 2.32 Diffusion flame representation in both unburned and
burned states.

We can now consider the simplified case where only fuel or oxidizer are present in the
fuel (stream F) and oxidizer (stream O) streams, meaning that YO,F = YF,O = 0. This
situation simplifies the expression of the mixture fraction to,

Z =
(νYF − YO)∗ + YO,O

νYF,F + YO,O
. (2.34)

By considering a stoichiometric mixture such that νYF = YO, we have,

Zst =
YO,O

νYF,F + YO,O
=

[
1 +

νYF,F

YO,O

]−1

. (2.35)

As a brief clarification, consider the reaction:

ν′FF + ν′OO ⇀ ν′′PP = (ν′F + ν′O)P (R3)

ν′FWFF + ν′OWOO ⇀ ν′′PWPP = (mF +mO)P. (R4)

From this formulation, an expression relating the equivalence ratio φ to the mixture
fraction can be obtained. We can first rewrite Eq. (2.33) as,

Z =
(νYF − YO)u + YO,O

νYF,F + YO,O
=

(νYF − YO)u
νYF,F + YO,O

+
YO,O

νYF,F + YO,O
(2.36)

Now, using Eq. (2.25) and the fact that YF,u = YF,FZ and YO,u = YO,O(1 − Z) as in
Fig. 2.32, we can write the mixture fraction as,

Z = Zst(1− Z)(φ− 1) + Zst, (2.37)
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and solve for φ as,

φ =
Z

1− Z
1− Zst
Zst

. (2.38)

We now present a few remarks on the mixture fraction:

• Key requirements:
– Derived from linear combination of subset of species mass fractions
– Conserved property (i.e. no scalar source term)
– Bounded between Z ∈ [0, 1] (Z → 0 for oxidizer stream, Z → 1 for fuel

stream)
– Representation of local composition with respect to fuel stream composition

• The definition that we introduced was based on a one-step global chemical reac-
tion, and the combination of fuel/oxidizer mass fraction (νYF−YO) was selected so
as to eliminate the source term from the corresponding species equation. Analysis
demonstrating this point in more detail will be discussed in Sec. 3.3.

• An extension of the mixture fraction to multistep reactions can be facilitated by
considering the elemental mass fraction, which was first introduced by [5]. Such
an expression involves relating mixture fraction to the elemental mass fractions of
carbon, hydrogen, and oxygen. In the case of carbon, for instance,

yC =

Ns∑
α=1

nC,α
YαMC

Mα
, (2.39)

where nC,α is the number of carbon atoms in species α. A main issue with this
definition is the difficulty in writing a conservation equation that is mathematically
tractable.

• The mixture fraction formulation presented within this section is limited to two-
stream systems. Extensions to multi-stream systems can be enabled via use of a
barycentric coordinate system or an elemental formulation, as discussed in Dis-
cussion Box 1.

• Extending the mixture fraction concept to liquid/gas-phase systems such as spray
flames can be accomplished in effective composition space, as detailed in Discus-
sion Box 2.
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Discussion Box 1: Various Elemental Mixture Fractions
The appropriate definition of the mixture fraction is heavily dependent on the particular problem
at hand. In [19] and [15], for instance, a piloted premixed jet flame is simulated, which requires
differentiating between the compositions in the pilot and coflow oxidizer streams. Thus, the
mixture fraction definition used is,

A =

(
yFC − y

O(0)
C y

O(1)
C − y

O(0)
C

yH − y
O(0)
H y

O(1)
H − y

O(0)
H

)
,

(
Z1

Z2

)
= A−1

(
yC − y

O(0)
C

yH − y
O(0)
H

)
(2.310)

The work of [36] and [35], on the other hand, consider a burner with both a coflow and an air
shroud, which requires a slightly different formulation. The important point here is that the
system configuration often determines the best mathematical modeling formulation!

Discussion Box 2: Generalizing the Mixture Fraction: Spray Diffusion Flames
Fundamentally, the classical mixture-fraction formulation cannot be used in spray flames wherein
liquid fuels are combusted because this expression becomes non-monotonic as a result of an
evaporation source term in the corresponding conservation equations. The effective composition
space can be defined as dη, and combines the mixture fraction defined for the gaseous phase,
Zg, and the mixture fraction of the liquid phase, Zl. It is shown by [23] that this quantity

dη =
√

(dZg)2 + (dZl)2, which reduces to classical mixture fraction Zg for gaseous systems, can
utilize the liquid-to-gas mass ratio Zl to correctly predict the behavior of laminar, one-dimensional
counterflow spray flames.

2.4. Enthalpy, Internal Energy, and Thermodynamic Properties

In combustion, we are mostly concerned with control volume analysis, so it is usually
convenient to work with enthalpy. We define the specific sensible + chemical enthalpy of
species α as,

dhα = cpdT + h0
f,α (2.41)

hα =

∫ T

T0

cp,αdT︸ ︷︷ ︸
hs

+h0
f,α︸︷︷︸
hc

, (2.42)

where the first term is the sensible enthalpy and the second term is the chemical enthalpy.
The enthalpy of a mixture can then be written in terms of the total sensible and chemical
enthalpies,

dh = hαdYα + dhαYα (2.43)

h =

Ns∑
α=1

hαYα =

∫ T

T0

cpdT +
∑
α

h0
f,αYα, (2.44)
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where cp =
∑Ns
α=1 Yαcp,α is the specific heat capacity of the mixture at constant pressure.

We can similarly define the specific total enthalpy as the sum of the mixture enthalpy and
the kinetic energy as,

ht =

∫ T

T0

cpdT +

Ns∑
α=1

h0
f,αYα +

1

2
|u|2, (2.45)

where the last term is the specific kinetic energy. In differential form, this can be written

dht = cpdT +

Ns∑
α=1

h0
f,αdYα + uidui. (2.46)

Finally, the following relation defines the internal energy e in terms of the sensible
enthalpy, pressure, and density,

de = dh− d(p/ρ), (2.47)

such that,

e =

∫ T

T0

cvdT −RT0 +

Ns∑
α=1

h0
f,αYα. (2.48)

We also note that the specific heat capacities at constant volume (cv) and constant pressure
(cp) are related by the ratio of specific heat, γ,

γ =
cp
cv
. (2.49)

Note that the specific heats for various quantities have been tabulated for both high and
low temperature regimes. These can generally be found in the form of NASA polynomials
[10],

cp,v =

5∑
i=−2

aiT
i. (2.410)

2.5. Conservation Equations

Chemically reacting flows are described by the conservation equations for mass, mo-
mentum, energy, and species. Here we derive these equations in general form and introduce
simplifications that are often used for turbulent flow simulation.
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2.5.1. Continuity Equation. The continuity equation, which describes conservation of
mass, can be written with full generality as follows:

∂tρ+∇ · (ρu) = 0, (2.51)

where ρ is the density and u is the velocity vector. By introducing the substantive derivative,

Dt ≡ ∂t + u · ∇, (2.52)

we can express Eq. (2.51) as,

Dtρ = −ρ∇ · u, (2.53)

which represents the net change of volume following a control mass. From this, it follows
for a generic scalar quantity that,

∂t(ρφ) +∇ · (ρφu) = ρ∂tφ+ φ∂tρ+ ρu · ∇φ+ φ∇ · (ρu) (2.54a)

= ρ(∂tφ+ u · ∇φ) + φ((((
(((((∂tρ+∇ · (ρu)) (2.54b)

= ρDtφ (2.54c)

2.5.2. Momentum Conservation. The momentum conservation equation can be writ-
ten as,

ρDtu = ∂t(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · σ +

Ns∑
α=1

ρYαgα, (2.55)

where gα denotes the vector of body forces acting on species α and σ is the viscous
stress tensor.

2.5.3. Species Conservation. It is most convenient to consider species conservation in
terms of the mass fraction of species α,

ρDtYα = ∂t(ρYα) +∇ · (ρuYα) = −∇ · jα + ρω̇α, (2.56)

where jα is the species diffusion flux and ρω̇α is the chemical source term of species α. The
species diffusion flux in Eq. (2.56) can be expressed as,

jα = −ρVαYα, (2.57)

with Vα the diffusion velocity of species α. We will consider models for this quantity
in Sec. 2.6.2. By considering Eq. (2.111b) and the relation between species conservation
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Eq. (2.56) and mass conservation Eq. (2.51), we can observe that the following relation
must hold,

Ns∑
α=1

[∂t(ρYα) +∇ · (ρuYα)] = ∂tρ+∇ · (ρu) ≡ 0. (2.58)

In light of Eq. (2.56), this directly implies the following constraints

Ns∑
α=1

∇ · jα =0 (2.59)

Ns∑
α=1

ρω̇α =0. (2.510)

2.5.4. Total Enthalpy Conservation. For open combustion systems it is convenient to
express energy conservation in terms of total enthalpy. Recalling Eq. (2.46), we can express
conservation of enthalpy as follows,

ρDtht = ∂t(ρht) +∇ · (ρuht) = ∂tp−∇ · q +∇ · (σ · u) + ρ

Ns∑
α=1

Yαgα · (u+ Vα), (2.511)

where ∂tp is the pressure work, −∇ · q is the heat flux, ∇ · (σ · u) is the viscous dissipation,

and ρ
∑Ns
α=1 Yαgα · (u + Vα) is the external body force work. By subtracting the rate of

change of the kinetic energy, we obtain an expression for the sensible and chemical enthalpy,

∂t(ρh) +∇ · (ρuh) = Dtp−∇ · q + σ : ∇u+ ρ

Ns∑
α=1

Yαgα · Vα. (2.512)

Using Eq. (2.48), the conservation equation for the chemical and sensible internal energy
can be written as,

ρDte = ∂t(ρe) +∇ · (ρue) = −∇ · q + σ : ∇u− p∇ · u+ ρ

Ns∑
α=1

Yαgα · Vα, (2.513)

where σ : ∇u is the viscous dissipation and p∇ · u is the pressure-dilatation work.

2.6. Constitutive Relations and Transport Properties

We can now complete the conservation equations by prescribing the constitutive rela-
tions for viscous stress and diffusive flux of both heat and mass.
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2.6.1. Viscous Stress Tensor. Here, we consider only Newtonian fluids, meaning that
viscosity is only a function of fluid properties (Y ,T ), but not dependent on the strain rate
or local velocity field. For this, we can write the viscous stress tensor in the following form,

σ = µ[∇u+ (∇u)T ] + λ∇ · u I, (2.61)

where µ is the dynamic viscosity, ν = µ/ρ is the kinematic viscosity, λ = κ − 2µ/3 is
the second viscosity coefficient, and κ is the dilatational (or bulk) viscosity coefficient; κ
describes the irreversible conversion of mechanical work into heat by dilatational strain
(sound waves, ultrasonic waves, etc.). The contribution of the dilatational viscous flux
(κ∇ · u) is small in dilute monatomic gases, low-Mach flows (∇ · u → 0), or boundary
layers. However, the ratio of κ/µ becomes significant for species relevant for combustion
applications (H2 ∼ 20, CH4 ∼ 2, O2 ∼ 1, N2 ∼ 1). The effect of bulk viscosity (see
Discussion Box 3) also requires consideration in high speed flows; this is seldom done,
as the effects of κ/µ are commonly neglected in flows of engineering interest. For more
information on this subject, see [24]. Finally, note that with κ = 0, we obtain the common
form of the viscous stress tensor,

σ = µ[∇u+ (∇u)T ]− 2

3
µ∇ · uI (2.62)

Discussion Box 3: History and Impact of Bulk Viscosity on Combustion Systems.
Stokes, Saint-Venant, and others originally made an argument that the bulk viscosity κ could
be set to zero in flows of practical interest – in fact, over the years this assumption has become
known as Stokes’ hypothesis. Indeed, this idea was supported by the fact that both kinetic
theory and experiment predict κ = 0 for a dilute monatomic gas. The κ = 0 assumption,
however, is effectively equivalent to stating that dilatational effects for a given problem can
be neglected. Recent studies using Direct Numerical Simulation (DNS) have shown that this
assumption is not valid in many flows of engineering interest [26].

In particular, in the context of combustion, it has recently been shown through DNS that the
effect of bulk viscosity can be important, but highly problem-dependent. Laminar flames, for
instance, are not modified by bulk viscosity, while the local structure and global properties of
turbulent flames may differ considerably when taking bulk viscous effects into account [24]. While
the modifications induced by the bulk viscosity transport term are extremely small at first, they
are indeed sufficient to lead to completely different realizations at a later time due to the chaotic
nature of turbulence. Interestingly, this work has also shown a distinct fuel-sensitivity of bulk
viscosity effect. While the inclusion of bulk viscosity is highly recommended for DNS calculations
using hydrogen-containing fuels, the effects of these terms are often negligible in flames involving
high-hydrocarbon fuels.

It is at this point also important to consider the dependency of viscosity on mixture com-
position and temperature – several different approximations are employed, each of which
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has a different scaling with temperature of the form,

ν

ν0
∼
(
T

T0

)m
, (2.63)

with,

ν = µ/ρ, (2.64)

the kinematic viscosity. Several common approximations are as follows:

(1) Chapman-Approximation:

µ = µ0

(
T

T0

)
, (2.65)

with µ0, T0 reference quantities. In terms of the kinematic viscosity, this yields
the following scaling,

ν

ν0
=

µ

µ0

ρo
ρ
6= f(T ). (2.66)

(2) Sutherland Form:

µ = µ0
T0 + Ts
T + Ts

(
T

T0

)3/2

, (2.67)

with the Sutherland temperature Ts ≈ 110.4 K. In this case, we observe a non-
trivial scaling with temperature,

ν

ν0
=

µ

µ0

ρ0

ρ
=
T0 + Ts
T + Ts

(
T

T0

)1/2

. (2.68)

(3) Wilke Form:

µ =

Ns∑
α=1

Xαµα∑Ns
β=1XβΦαβ

, (2.69)

where Φαβ =
1√
8

(
1 +

Wα

Wβ

)−1/2
[

1 +

(
µα
µβ

)1/2(
Wβ

Wα

)1/4
]
, (2.610)

is a function of molecular weight and viscosity of the different species and Φ is
the appropriate collision cross-section. For a relevant discussion of how different
approximations of the viscosity can affect combustion simulations, see [58]. Note
that viscosity is generally only important in low Reynolds number flows.
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2.6.2. Species Transport. The species flux jα in Eq. (2.57) introduces the diffusion veloc-
ity. There are two major approaches to computing the diffusion velocity: multi-component
transport and mixture-averaged transport. In the case of full multi-component diffusion,
we can write the diffusion velocity as,

Vα = − 1

XαW

Ns∑
β 6=α

Wβαα,βdβ −
αTα
ρYα
∇ lnT, (2.611)

where αα,β is the multicomponent diffusion coefficient of species α diffusing into species β,

αTα is the thermal diffusion coefficient, and the term
αTα
ρYα
∇ lnT describes the Soret effect,

wherein the species diffusion occurs due to a temperature gradient. The diffusion vector dβ
can be written as,

dβ = ∇Xβ + (Xβ − Yβ)∇ ln p+
ρ

p

Ns∑
α=1

YαYβ(gα − gβ). (2.612)

Note that the term ∇Xβ describes the species gradient while the term (Xβ − Yβ)∇ ln p
describes diffusion flux due to a pressure gradient.

In a mixture-averaged approach, we write the diffusion velocity as the following using
the Hirschfelder-Curtiss approximation,

Vα = − 1

Xα
ααdα −

αTα
ρYα
∇ lnT, (2.613)

with αα the mixture-averaged diffusion coefficient of species α defined as,

αα =
1− Yα∑Ns
β 6=α

Xβ
αα,β

. (2.614)

More detail on this formulation can be found in [50].
Common simplifications of these species expressions include:

• Species diffusion by temperature gradients are small (neglect thermal diffusion),

Vα = − 1

Xα
ααdα (2.615)

• Species diffusion by pressure gradients are small (in such situations as open flames
and deflagrations). This case results in a simplified form of the diffusion velocity
expression, known as Hirschfelder’s Law [50],

Vα = −αα∇ lnXα, (2.616)

with dα = ∇Xα from Eq. (2.612)
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• Under even stronger assumptions including equal species diffusivities (αα = α) or
binary mixtures, Fick’s Law can also be used exactly,

Vα = −α∇ lnYα (2.617)

2.6.3. Energy/Heat Flux. The heat flux vector has the following form,

q = −λ∇T + ρ

Ns∑
α=1

YαVαhα −
p

ρ

Ns∑
α=1

1

Yα
αTαdα + qR, (2.618)

where qR is the radiative heat flux, λ∇T is the conductive heat flux, ρ
∑Ns
α=1 YαVαhα is

the transport of enthalpy by different species, and p
ρ

∑Ns
α=1

1
Yα
αTαdα is heat flux induced by

pressure and/or body forces (also known as the Dufour effect). The thermal conductivity
is evaluated via the Mason-Saxena formula [43],

λ =

Ns∑
α=1

λα

1 +

Ns∑
β 6=α

Gαβ
Xβ

Xα

 with Gαβ =
2

5
L∗αβ

T

p

λα
ααβ

, (2.619)

where L∗αβ is a non-dimensional function involving the molecular weights of α and β and
depends on exactly how the approximation is made. Thus, several contributions to transport
include:

• Soret Effect: Diffusion of species due to a temperature gradient. Note that this
effect tends to push light molecules such as hydrogen to hotter regions and heavy
molecules such as soot and nitrogen to colder regions. This effect is also known
as thermophoresis in the context of particulates [38, 6].

• Dufour Effect: Diffusion of heat/energy due to a concentration gradient [38].
• Diffusion by pressure gradients
• In general, second-order diffusion processes such as the Soret and Dufour effects

are much smaller in magnitude than Fickian diffusion. Important exceptions in
the context of combustion include transport of hydrogen against temperature gra-
dients, wherein thermal diffusion can compete with Fickian diffusion, and the
transport of heavy particulates such as soot down temperature gradients. Indeed,
it is thermophoresis that ensures that soot particles formed in a diffusion flame
tend to remain within the reaction zone. The Dufour effect, on the other hand, is
generally negligible in combustion environments.
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Discussion Box 4 : Physics and Conventions of Thermodiffusion
Thermophoresis, or the Soret effect, is generally observed at scales less than 1 mm. As small
particles near a hot area are heated, they acquire greater kinetic energy and begin to push larger,
slower-moving particles away from the heat source. The result of this phenomenon, which is
generally referred to as thermodiffusion, is labeled positive when particles move from a hot to
a cold region – thus, in general, heavier species exhibit positive thermodiffusive behavior while
lighter species exhibit negative thermodiffusive behavior [38]. In addition to its important impact
on several combustion systems such as those including high-hydrogen fuels, thermophoresis is
critical in processes such as manipulating single biological molecules and adjusting impurity
concentrations in semiconductor wafers.

2.6.4. Recap and Summary of Working Equations.

We can now summarize our presentation of the conservation equations,

Mass: ∂tρ+∇ · (ρu) = 0 (2.51)

Momentum: ∂t(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · σ +

Ns∑
α=1

ρYαgα (2.55)

Species: ∂t(ρYα) +∇ · (ρuYα) = −∇ · jα + ρω̇α (2.56)

Total Enthalpy: ∂t(ρht) +∇ · (ρuht) = ∂tp−∇ · q +∇ · (σ · u) + ρ

Ns∑
α=1

Yαgα · (u+ Vα)

(2.511)

State Relation: p = ρRT (2.11)

with the following constitutive relations,

σ = µ[∇u+ (∇u)T ] + (κ− 2µ/3)∇ · u I (2.62)

µ = f(X,T ), κ: bulk viscosity

jα = −ρVαYα (2.57)

q = −λ∇T (2.620)

2.7. Reaction Chemistry

Let us first consider the generic reaction sequence,

Ns∑
α=1

ν′αlAα

kf


kb

Ns∑
α=1

ν′′αlAα, l = 1, . . . , Nr (2.71)

with Nr the number of reactions, Aα defining species α, and ν′αl, ν
′′
αl the molar coefficient

of species α in reaction l. Note that we can also define ṁα as the chemical source term of
species α in terms of wl, the reaction rate for reaction l,
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ṁα = ρω̇α = Wα

Nr∑
l=1

ναlwl. (2.72)

Further, we can write wl as follows,

wl = klf

Ns∏
α=1

[Aα]ν
′
αl − klb

Ns∏
α=1

[Aα]ν
′′
αl , (2.73)

where [Aα] =
ρYα
Wα

, (2.74)

in terms of klf and klb, the forward and backward rate coefficients of reaction l. These rate
constants can be written in Arrhenius form,

klf = AlT
βl exp

{
−EA,lRT

}
, (2.75)

and the backward rate constant is obtained from the equilibrium constant,

K =
kf
kb
. (2.76)

2.8. Useful Simplifications

A number of useful assumptions can be invoked in order to simplify this analytic treat-
ment, isolate individual combustion-physical processes, and reduce computational complex-
ity. Common assumptions include:

• Isothermal combustion: useful for idealized DNS, analytical studies, and asymp-
totic investigations

– ρ = constant; enables consideration of Reynolds-averaging; neglect of dilata-
tional effects

– Constant transport properties
– Reaction is passive and has no feedback on the hydrodynamic flowfield; used

for instability theory
– Transition analysis

• One-step chemistry: νF + O→ (1 + ν)P, simplifies analysis by reducing chemical
complexity

• Calorically perfect gas: cp = constant, simplifies transport
• Equal, but temperature-dependent heat capacity (thermally perfect): cp,α = cp =
f(T )
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• Equal species and thermal transport (i.e. diffusion):

αT = αα → Leα =
λ

ρcpαα
=
αT
αα

= 1 (2.81)

• Constant pressure (isobaric): p = constant; good approximation for low-Mach
number deflagrations and diffusion flames ; Not valid for high-speed combustion
or detonation



CHAPTER 3

Mathematical Analysis of Simple Flames

We will now proceed to apply the equations and formulation presented above to a
coaxial jet flame. We will use this setting to review key equations and simplifications while
also introducing important non-dimensionalizations.

3.1. Non-dimensionalization

To obtain a fundamental understanding of physical processes via mathematical models,
it is convenient to non-dimensionalize the modeling equations. Non-dimensionalization
tends to reveal the significance of related processes and timescales, identify the importance
of individual terms in the overall solution, and enable self-similarity analysis. The process
of non-dimensionalization often entails introducing appropriate reference quantities. To
illustrate this, we consider a simple canonical problem of a jet diffusion flame [48]. In this
situation, the combustion chemistry can be modeled by a global one-step reaction:

ν′FF + ν′OO
kf
⇀ ν′′PP. (3.11)

Fuel

Oxidizer

Stoichiometric Flame
          Surface

Figure 3.11 Diagram of a jet diffusion flame with diameter D0.

We can define reference quantities with respect to bulk properties and quantities of the
jet such as the jet nozzle diameter D0, the bulk jet exit velocity u0, and properties of the

27
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jet fluid such as viscosity ν0, thermal diffusivity αT0 , heat capacity cpJ , and density ρ0. To
simplify our analysis, we can introduce the following simplifying assumptions:

• Low-speed combustion: compressibility effects are negligible and convective scal-
ing is employed

• Equal species diffusivity: αα = α; unity Lewis number approximation
• Fick’s law (via equal species diffusivity): YαVα = −α∇Yα – see [50] for more

details
• Constant and equal heat capacity: cp,α = cp; calorically perfect gas
• Ideal gas: Eq. (2.11) applies
• Pressure decomposition: in low Mach number flows, we can decompose the pres-

sure, we can introduce the Mach number M = u/c (with c the speed of sound) as
the relevant parameter for an acoustic scaling. We can then expand the pressure
using perturbation analysis as,

p = p0 +M2
0 p2 +O(M3

0 ), (3.12)

where p0 is the thermodynamic pressure, which affects the equation of state, and
p2 is the hydrodynamic pressure, which affects the momentum equation.

With these assumptions, we can utilize the formulation of Sec. 2.5 to model the system,

Mass: ∂tρ+∇ · (ρu) = 0 (3.13a)

Momentum: ∂t(ρu) +∇ · (ρu⊗ u) = −∇p2 +∇ · σ + ρg (3.13b)

Fuel: ∂t(ρYF) +∇ · (ρuYF) = −∇ · (ρα∇YF) +WFνFw (3.13c)

Oxidizer: ∂t(ρYO) +∇ · (ρuYO) = −∇ · (ρα∇YO) +WOνOw (3.13d)

where, w = A exp

{
−EART

}(
ρYF

WF

)ν′F (ρYO

WO

)ν′O
, (3.13e)

Energy: ∂t(ρT ) +∇ · (ρuT ) = ∇ ·
(
λ

cp
∇T
)

+
1

cp
σ : ∇u+ q̇T +

1

cp
(∂tp0 + u · ∇p0),

(3.13f)

q̇T = − 1

cp

Ns∑
α=1

hαWαναw, (3.13g)

where hα combines the chemical and sensible enthalpies of species α. We now introduce
the following nondimensional quantities:

x† = x
D0

; t† = tu0

D0
; u† = u

u0
; p† = p

ρ0u2
0
; ρ† = ρ

ρ0
; α† = α

α0

ν† = ν
ν0

; Wα
† = Wα

W ; σ† = D0

ρ0ν0u0
σ; T † = T

Tb−Tu = T
∆T ; h† = h

cpJTB
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∂t
† = D0

u0
∂t; ∇† = D0∇; Yα

† = Yα
Y0

; Y0 = 1; êg : gravitational direction;

Ze = EA
RTb ; Ce = Tb−Tu

Tb
; TA = EA

R

With these definitions, we can rewrite the exponent in Arrhenius form as,

EA
RT =

Ta
Tb

Tb
T

(3.14)

= Ze

(
1

CeT †

)
(3.15)

= Ze

(
1− CeT †
CeT †

+ 1

)
(3.16)

= Ze+
Ze

Ce

(
1− CeT †

T †

)
(3.17)

∴ exp

{
−EART

}
= exp{−Ze} exp

{
−Ze
Ce

(
1− CeT †

T †

)}
, (3.18)

With this expression, we can rewrite the non-dimensional chemical source term as,

w† =
wWν0

u0/D0ρ0
, (3.19)

where ν0 is a reference net stoichiometric coefficient and W is a reference molecular weight.
Similarly, the non-dimensional conservation equations become,

Mass : ∂†t ρ
† +∇† · (ρ†u†) = 0 (3.110)

Momentum : ∂†t (ρ
†u†) +∇† · (ρ†u† ⊗ u†) = −∇†p† +

1

Re
∇† · σ† +

1

Fr
ρ†êg (3.111)

Energy : ∂†t (ρ
†T †) +∇† · (ρ†u†T †) =

Le

ReSc
∇† ·

(
ρ†α†T∇†T †

)
+
Ec

Re

1

c†p
σ† : ∇†u†

(3.112)

+Da
1

c†p

Ns∑
α=1

h†αW
†
αν
†
αw
†
α + Ec

1

c†p
(d†tp

† + u† · ∇†p†).

We can also introduce the Damköhler number,

Da =
τFlow
τChem

=
Characteristic Flow Time Scale

Chemical Time Scale
=
D0

u0

(
W0

ρ0

)
ν0

(
ρ0

W0

)νO+νF

exp{−Ze}.
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such that the species conservation equations take the form:

∂†t (ρ
†YO

†) +∇† · (ρ†u†YO
†) =

1

ReSc
∇† · (ρ†α†∇†YO

†) +DaW †Oν
†
Ow
† (3.113a)

∂†t (ρ
†YF
†) +∇† · (ρ†u†YF

†) =
1

ReSc
∇† · (ρ†α†∇†YF

†) +DaW †Fν
†
Fw
†

with, w† = exp

{
−Ze
Ce

(
1− CeT †

T †

)}[
ρ†Y †F
W †F

]νF [
ρ†Y †O
W †O

]νO
. (3.113b)

3.2. Non-dimensional Parameters

The non-dimensionalization procedure developed in Sec. 3.1 yields several key parame-
ters that are important in understanding the relative effects of different physical phenomena:

Reynolds Number: Re =
u0D0

ν0
=

Inertial Forces

Viscous Forces

Schmidt Number: Sc =
ν†0

α†0
=

Viscous Forces

Diffusive Forces

Lewis Number: Le =
λ0

cpJρ0α0
=

Thermal Diffusion

Species Diffusion

Damköhler Number: Da =
τFlow
τChem

=
Convective Time

Chemical Time

Zeldovich Number: Ze =
Ta
Tb

=
EA
RTb

=
Activation Temperature

Flame Temperature

Heat Release Parameter: Ce =
Tb − Tu
Tb

=
Temperature Increase

Flame Temperature

Froude Number: Fr =
u2

0

gD0
=

Inertial Force

Gravitational Force

Richardson Number: Ri =
1

Fr
=
gD0

u2
0

=
Gravitational Force

Inertial Force

Eckhart Number: Ec =
u2

0

cp∆T
=

Kinetic Energy

Sensible Enthalpy

Comparing terms obtained from convective and acoustic analysis, we find that for low-
Mach flows, we can write the momentum equation as,

∂†t (ρ
†u†) +∇† · (ρ†u† ⊗ u†) = −∇†p†2 +

1

Re
∇† · σ† +

1

Fr
ρ†êg, (3.21)
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where the ∇†p† term is the hydrodynamic pressure. The non-dimensional form of the
species equations becomes,

∂†t (ρ
†Yα
†) +∇† · (ρ†u†Yα†) =

1

ReSc
∇† · (ρ†α†∇†Yα†) +DaW †αν

†
αw
†, (3.22)

and the temperature equation can be expressed as,

∂†t (ρ
†T †) +∇† · (ρ†u†T †) =

Le

ReSc
∇† ·

(
ρ†α†T∇†T †

)
+
Ec

Re

1

c†p
σ† : ∇†u†+ (3.23)

Da
1

c†p

Ns∑
α=1

h†αW
†
αν
†
αw
†
α +

γ − 1

γ

T0

Tb

1

Ce

1

c†p
(∂†t p

† + u† · ∇†p†),

where the term γ−1
γ

T0

Tb
1
Ce is O(1) and we used the relation,

c20
γcpJ∆T

=
c20

γ
(

γ
γ−1R0T0

) T0

Tb

Tb
∆T

, (3.24)

with T0 = Tu the unburned gas temperature.

3.2.1. Reminders on Compressibility and Low-Mach Number Formulation. The
non-dimensionalization presented in Sec. 3.2 allows us to identify key terms that can be ne-
glected, simplifying analysis in various contexts. From convective scaling analysis, we found
that the non-dimensional quantities Fr, Re, Sc, Da, and Ec become relevant parameters.
Based on their magnitude and relative scaling, we can neglect their contribution. Alterna-
tively, we could introduce an acoustic/compressible scaling by which we scale pressure by
a reference pressure such that

p† =
p

p0
, (3.25)

where p0 is the characteristic pressure and u0 is a characteristic velocity scale. Recognizing
that p0 = ρ0c

2
0/γ and that the jet exit Mach number is M0 = u0/c0, we can write the

non-dimensional form of the momentum equation as,

∂†t (ρ
†u†) +∇† · (ρ†u† ⊗ u†) = − 1

γ

1

M2
0

∇†p† +
1

Re
∇† · σ† +

1

Fr
ρ†êg. (3.26)
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Thus, in the limit of a low-Mach number flow, we can write the governing equations in the
following (dimensional) form using the low Mach number pressure expansion of Eq. (3.12),

∂tρ+∇ · (ρu) = 0 (3.27a)

∂t(ρu) +∇ · (ρu⊗ u) = −∇p2 +∇σ + ρgêg (3.27b)

∂t(ρYα) +∇ · (ρuYα) = ∇ · (ρα∇Yα) +Wαναw (3.27c)

∂t(ρT ) +∇ · (ρuT ) = ∇ · (ραT∆T ) +
1

cp

Ns∑
α=1

hαWαναw +
1

cp
(∂tp0 + u · ∇p0), (3.27d)

along with the equation of state p0 = ρRT . For incompressible flows, we therefore decouple
hydrodynamic and acoustic pressure, so that the density is independent of pressure per-
turbations. This can be illustrated by expanding the density around the thermodynamic
pressure,

ρ(p0 + δp, s, Y ) ≈ ρ(p0, s, Y ) +

(
∂ρ

∂p

)
s,Y

δp, (3.28)

with (∂ρ/∂p|s = 0). Recognizing that c2 = (∂p/∂ρ|s,Y ), we find that thee pressure pertur-

bation will propagate with infinite sound speed such that c→∞ in the low-Mach limit.

3.3. Mixture-Fraction and Coupling Function

Here we extend our discussion of mixture fraction that we introduce in Sec. 2.3. For
diffusion flames it is convenient to characterize the local mixing, which is a conserved scalar
(but not a passive one). There are several main advantages to this approach. First, the
conserved scalar provides a convenient representation of the local mixing. Secondly, it
enables the representation of reaction chemistry in terms of a reduced set of scalars – that
is, (Y , T, w, ...) = f(Z). A specific example would be the Burke-Schumann solution (the
thin flame sheet approximation).

The mixture fraction can be introduced by first defining a coupling function(a non-
normalized mixture fraction), which is most easily accomplished if we consider the one-step
chemistry,

ν′FF + ν′OO→ ν′′PP (3.31)

with unity Lewis number, meaning that thermal and species are characterized by equal
diffusivities. We can now define a general transport operator L such that,

L(Y ) = ρ∂tY + ρu · ∇Y −∇ · (ρα∇Y ), (3.32)

which allows us to write the species transport equations as,

L(YF) = WFνFw, (3.33)
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L(YO) = WOνOw. (3.34)

Linearly combining these equations allows us to eliminate the right-hand side, leaving us
with,

WOνO

WFνF
L(YF)− L(YO) = 0 (3.35)

Since the operator is linear, we can write the coupling function as,

ξ = νYF − YO, (3.36)

where ν is defined as in Eq. (2.24). From this, a normalized coupling function describing
the mixture fraction is derived:

Z =
ξ − ξO
ξF − ξO

, (3.37)

By relating density, species, temperatures, and other quantities to the mixture fraction, we
can reduce our problem to solving the following equations:

ρDtu = −∇p+∇ · σ + ρg (3.38)

ρDtZ = ∇ · (ρα∇Z) (3.39)

where the last expression is obtained from the Burke-Schumann solution. This definition of
the mixture fraction is strictly valid only for one-step chemistry. The important question
then becomes: how can we derive a mixture fraction for a general problem that contains
both preferential diffusion and multiple species? Fortunately, a more general definition can
be obtained by recognizing conservation of elements. We first define the elemental mass
fraction of element β (e.g. C,O,H, etc.) as,

yβ =

Ns∑
α=1

nα,βWβ

Wα
Yα, (3.310)

with nα,β the number of atoms of element β in species α, Wβ the molecular weight of
element β, Wα the molecular weight of species α, and Yα the mass fraction of species α.
As an example, we can compute yC and yO for a CO-CO2-O2 mixture as,

yC =
WC

WCOYCO
+

WC

WCO2

YCO2 (3.311)

yO =
WO

WCO
YCO +

2WO

WCO2

YCO2 +
2WO

WO2

YO2 . (3.312)

By introducing,

y = ζCyC + ζOyO + ζHyH, (3.313)
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with the weights ζi added to get compositional balance, we obtain,

Z =
y − yO

yF − yO
; y =

2

WC
yC +

1

2WH
yH −

1

WO
yO (3.314)

As a final remark, it is important to remember that for spray flames, we can identify
a mixture fraction that is associated with the gaseous and liquid phases, as detailed in
Discussion Box 2.
Discussion Box 5: Reduced Mechanisms for Methane-Air Combustion
While we have performed our analysis here considering a one-step global reaction, in reality, a
great deal of academic work has been devoted to determining reaction pathways (or mechanisms)
that can be used to compute the chemical source terms in both the species conservation and
energy equations. Key considerations in forming these reaction mechanisms include agreement
with experiment on key parameters (e.g. species and temperature profiles) and computational
cost. The work of [4], for instance, demonstrates the reduction of a detailed 58-species mechanism
for methane-air combustion to a four-species reduced mechanism, which reproduces behavior of
the detailed mechanism to a degree that is useful in simulations wherein it is helpful to minimize
computational cost of the chemical source terms. This issue is discussed in further detail in
Sec. 5.2.

3.4. Self-Similarity and Structure of Laminar Flames

In preparation for transition and turbulent flame analysis, it is convenient to revisit
the similarity structures of flames. For this analysis, we consider a jet diffusion flame and
utilize the mixture fraction concept. A similar presentation can be found in [38], and a
diagram of the system can be found in Fig. 3.41

Fuel

Oxidizer
Potential Core

Centerline

Figure 3.41 Coordinate system for the self-similar jet diffusion flame.
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We begin with the governing equations developed previously,

Dtρ = −ρ∇ · u (3.41a)

ρDtu = −∇p+∇ · σ, (3.41b)

ρDtZ = ∇ · (ρα∇Z), (3.41c)

(ρ, ν, α) = f(Z), (3.41d)

where the last expression means that all thermodynamics information depends explicitly
on the mixture fraction. The following key assumptions are important:

• Equal and constant viscous-diffusive properties (αα = α→ Sc = 1)
• No gravitational effects: Fr →∞
• Steady-state
• Surrounding air is at rest
• ν constant
• Pressure in the flow is uniform
• Neglect mass diffusion and viscous effects in the axial direction

Using the non-dimensionalization introduced in Sec. 3.1, the steady-state governing equa-
tions in non-dimensional polar form become,

∂

∂x
(ρu) +

1

r

∂

∂r
(ρvr) = 0, (3.42)

∂

∂x
(ρuu) +

1

r

∂

∂r
(ρuvr) =

1

Re

1

r

∂

∂r

(
ρr
∂u

∂r

)
, (3.43)

∂

∂x
(ρuZ) +

1

r

∂

∂r
(ρZr) =

1

ReSc

1

r

∂

∂r

(
ρr
∂Z

∂r

)
. (3.44)

Note that Eq. (3.42) is not technically needed because pressure is assumed to be constant.
Appropriate boundary conditions can be stated as,

r = 0 :
∂u

∂r
= 0; v = 0;

∂Z

∂r
= 0 (3.45)

r →∞ : u = 0; v = 0; Z = 0 (3.46)

We can now rewrite the governing equations as,

Continuity:
∂

∂x
(ρur) +

∂

∂r
(ρvr) = 0, (3.47)

Axial Momentum: ρur
∂

∂x
u+ ρvr

∂

∂r
u =

1

Re

∂

∂r

(
ρr

∂

∂r
u

)
, (3.48)

Mixture Fraction: ρur
∂

∂x
Z + ρvr

∂

∂r
Z =

1

ReSc

∂

∂r

(
ρr

∂

∂r
Z

)
; (3.49)
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We can also introduce the Howarth transformation, which will re-parameterize system vari-
ables in a manner that simplifies mathematical analysis. Using the definitions,

ξ = x, (3.410)

r̂ =

(
2

∫ r

0

ρr′dr′
)1/2

, (3.411)

η =
r̂(r)

ξ
, (3.412)

where η is the spreading ratio. Applying this transformation allows for deriving self-similar
equations for axial velocity and mixture fraction that admit an analytic solution. Deriving
this set of equations is left as homework.

Discussion Box 6: Instabilities in unsteady diffusion flames.
While the classical analysis presented here deals with a steady diffusion flame under
a variety of simple assumptions, even this relatively simple configuration is commonly
studied in combustion science. In the work of [58], for instance, an analysis is performed to
understand the impact of various model parameters (thermodynamic properties, viscous-
diffusive transport, reaction chemistry, etc.) on the development of flow instabilities in jet
diffusion flames. Results indicate that, for instance, certain approximations for expressing
the viscosity and diffusivity can numerically damp hydrodynamic instabilities. Further,
use of a one-step global reaction mechanism as opposed to detailed chemistry can also
significantly attenuate important instability modes. From a practical standpoint, such
instabilities can be quite important in the design of practical nonpremixed systems, as
they can enhance mixing in a way that can result in improved performance. Thus, it is
critical to consider the effect of each modeling choice one makes in a turbulent combustion
context, even in flows that might at first glance seem relatively simple.



CHAPTER 4

Transition and Turbulence

4.1. Scaling and Nondimensionalization

Turbulent flows require consideration of interaction between different spatio-temporal
scales. Indeed, turbulence is controlled by inertial effects such as non-linear convective
processes. The key relevant parameter in defining turbulence and its associated transition
is the Reynolds number, Re, defined in Sec. 3.2. Let us now consider both non-reacting and
reacting turbulent jets, as shown in Fig. 4.11. From turbulence theory and self-similarity
analysis, we know that jet momentum is conserved in the high-Re limit by integration of
Eq. (3.111) assuming constant pressure and Fr →∞,

∂x(ρuxux) = 0→ ρu2
xA(x) = ρu2

0A0. (4.11)

Further, we can define a local jet Reynolds number as,

Re1/2 =
uxr1/2

ν
, (4.12)

with r1/2 the jet half width, ux the centerline velocity, and ν the local kinematic viscosity.
From the self-similarity analysis of Sec. 3.4, we know that,

ux ∼
(
x

D0

)α
; r1/2 ∼

(
x

D0

)β
; α ∼ 1

β
(4.13)

where for a non-reacting jet, the local Reynolds number remains constant (with ν constant).
In the case of a reacting jet, the effects of temperature variation on viscosity through
Eq. (2.63),

ν ∼ ν0

(
T

T0

)m
, (4.14)

where the value of m = 5/2 is from the Sutherland approximation. Excellent work on this
subject was performed by [46].

Now, assuming similar scaling for the velocity and jet radius, we can observe that the
reacting jet introduces a dependence of the local Reynolds number on temperature and the
potential for relaminarization, as shown in Fig. 4.12,

37
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Figure 4.11 Diagram of a turbulent jet.

ux ∼
(
x

D0

)α′
;

(
r1/2 ∼

x

D0

)β′
(4.15)

ReR1/2 =
uxr1/2

ν0

(
T

T0

)m
= Re1/2

(
T

T0

)m
(4.16)

Figure 4.12 Differences in behavior of local jet Reynolds number for
reacting and nonreacting turbulent jets.

4.2. Transition of Laminar Jet Flames

As shown in Fig. 4.21, a variety of different mechanisms contribute to the transition to
turbulence – viscosity, heat release, and dilatation all play important roles. The effects of
heat release in particular are detailed in Discussion Box 7.
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Figure 4.21 Mechanisms for transition to turbulence.

Discussion Box 7: Effects of heat release on turbulent flows
The work of [33] investigated the effect of various aspects of heat release on key aspects of
turbulent flows via a series of detailed LES calculations. Simulations for both isothermal and
reactive jets showed good agreement with available experimental data for the centerline velocity
and scalar decay, and also jet half widths. Further, the simulations showed that the quasi-
laminarization of the shear layer surrounding the jet core region is mainly induced by the increase
in viscosity and diffusivity due to heat-release, rather than dilatation effects. Contributions of
the fluctuating mass flux to the overall mass flux were also shown to be contribute as much as
15 % to the total mass flux. This last observation is particularly important, as this term is often
neglected in experimental studies due its difficult measurement.

The transition of laminar jet flames in particular can be studied using classical linear
stability theory [57]. In general, transition is controlled by two key quantities: a Kelvin-
Helmholtz mode that dominates the inviscid shear layer and a buoyancy-driven instability
mode. To study the instability mode, one can develop a set of temporal and spatial insta-
bility analyses by decomposing a solution vector as,

φ = (ρ, u, T, p)T (4.21)

with u = (u, v, w) and mean and fluctuating quantities,

φ(x, t) = φ(x) + φ′(x, t) (4.22)

Neglecting viscous effects and heat-release, one can write,

∂tρ
′ +∇ · (ρu′ + ρ′u) = 0 (4.23a)

∂t(ρ̄u
′) + ∂t(ρ

′u) +∇ · (ρ′u⊗ u+ ρu⊗ u′) = −∇p′ +∇ · σ′ + gρ′êg (4.23b)

∂t(ρT
′) + ∂t(ρ

′T ) +∇ · (ρ′uT + ρu′T + ρuT ′) = (4.23c)

Dtp
′ −∇ · q′ + σ′ : ∇u+ σ : ∇u′ + ρ′

Ns∑
α=1

Yαgα · Vα,
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where a planar wave approximation can be used to represent any of the fluctuating
quantities,

φ′ = φ̂(r) exp{−i(ωt−mθ − αx)}, (4.24)

in terms of a temporal fluctuation frequency ω, an axial wavenumber α, and an azimuthal
mode number m. In this model instabilities are governed by linear growth rates, and the
system represented by Eq. (4.23a) - Eq. (4.23c) is converted to a set of ODEs that can
be solved using a shooting method. To investigate spatial instabilities, we would prescribe
ω ∈ R and solve for α ∈ C to obtain a plot such as that shown in Sec. 4.2. To investigate
temporal instabilities, we would do the reverse: prescribe α ∈ R and solve for ω ∈ C.

Figure 4.22 Growth rate plot for spatial instability analysis.
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Discussion Box 8: Flickering instability in diffusion flames
Low frequency flame oscillations, also known as the flame flicker and flare, have been observed for
some time. Interestingly, the flicker frequency observed in nonpremixed and partially premixed
flames is relatively independent of key parameters such as fuel type, nozzle size, and jet exit
velocity. While a variety of different hypotheses and conjectures were proposed to explain the
phenomenon, Buckmaster and Peters [9] eventually showed that a modified Kelvin-Helmholtz
type instability exists in diffusion flames, predicting a low frequency oscillation around 17 Hz.
The instability is due to a buoyancy-induced velocity field which surrounds a forced convective
flow. It was further speculated that the vortical structures outside the luminous flame are due
to buoyancy-driven instability and are also responsible for the low frequency flame oscillation.
As a followup to this work, a stunning planar visualization of the outer vortices was performed
by [14]. The frequency of the vortical structure outside the luminous flame was found to correlate
with the flame oscillation frequency, generally found to be in the range of 10 Hz - 20 Hz. This
flame oscillation frequency showed a weak dependence on burner exit velocity and coflowing
annulus air, and the frequency increased as the burner exit velocity or the coflowing air velocity
was increased. Buoyancy-driven toroidal vortices were also shown to exert significant stretching
on the flame surface, which can locally quench an otherwise continuous flame surface and result
in a detached flame puff. Thus, it became clear that buoyancy driven vortices are important
to the dynamics of the flame at low and transitional Reynolds number conditions, at the least.
This is an excellent example of a study that used a combination of first-principles theory and
experiment to understand key characteristics of important combustion systems.

4.3. Turbulence

4.3.1. Statistical Analysis. Turbulent flows involve a wide rage of spatio-temporal scales
and random motion. To describe turbulence, we therefore follow the usual statistical ap-
proach wherein we consider a scalar flow field variable ζ(x, t),

ζ = {ui, T, Y ...}. (4.31)

We can introduce a Reynolds-decomposition:

φ = φ+ φ′, (4.32)

where φ is an averaged field and φ′ is a fluctuating field quantity. In general, both φ and φ′ =
ζ ′ are generally functions of both space and time. We can distinguish between statistically
stationary, spatially homogeneous, and statistically periodic as in Fig. 4.31. Statistically
stationary variables have a consistent integrated average in time, spatially homogeneous
variables have a consistent integrated average in space, and statistically periodic variables
are expected to take the same average value at time intervals of a specified period T .

A more general (and equal) representation for the mean quantity is obtained by intro-
ducing a statistical approach. For this, we consider a Probability Density Function (PDF)
of φ, where x and t denote spatio-temporal dependence,

Pζ(x, t). (4.33)
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Figure 4.31 Demonstrations of statistical stationarity

The cumulative distribution function can also be defined such that,

F (ζ) =

∫ ζ

−∞
P (ζ ′)dζ ′, (4.34)

where it immediately follows that P (φ) = dF (φ)/dφ. This is illustrated graphically in
Fig. 4.32.



4.3. TURBULENCE 43

This PDF has several additional properties – note that we use ξ and ζ as below as
scalar sample space variables:

• P (φ) > 0
•
∫∞
−∞ P (φ)dφ

• P (a ≤ φ ≤ b) =
∫ b
a
P (φ)dφ

• Joint PDF: P (ξ, ζ)
• Marginal PDF:

P (ξ) =

∫
P (ξ, ζ)dζ (4.35)

P (ζ) =

∫
P (ξ, ζ)dξ (4.36)

• From Bayes’ theorem, we can derive a conditional PDF P (ζ|ξ) = P (ξ,ζ)
P (ξ)

Importantly, the moments of a distribution can be expressed in terms of traditional
terminology as,

Mean : E[ξ] = 〈ξ〉 =

∫
ξP (ξ)dξ, (4.37)

Variance: V ar[ξ] = 〈ζ2〉 =

∫
(ξ − 〈ξ〉)2P (ξ)dξ, (4.38)

nth Moment: 〈ξ′n〉 =

∫
(ξ − 〈ξ〉)nP (ξ)dξ, (4.39)

with n = 3 defining the skewness (“degree of asymmetry”) and n = 4 the kurtosis (“peaked-
ness”).

Later, we will consider a mixture-fraction model for non-premixed flames and condi-
tional moment closures (CMC). This model relies on conditional PDFs such as P (Y |Z),
P (T |Z), and P (C|Z).

Furthermore, many combustion models such as flamelet models or models for premixed
combustion utilize presumed PDF approaches to model the statistical distribution of scalar
variables.

As an example of a joint PDF, we can consider a deterministic adiabatic flame tem-
perature problem. Here, we can generalize this analysis to a case wherein we know the
functional relation between two scalars. To illustrate the idea of joint, conditional, and
marginal PDFs, let us assume that we have two random variables x and y such that,

x ∈ [−1, 1] (4.310)

y ∈ [0, 1] (4.311)

y = 1− x2, (4.312)
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Figure 4.32 Illustration of PDF and CDF

The joint PDF is then given as,

P (x, y) =
1

2
δ(f), (4.313)

with f = y− 1 +x2, where δ is the delta function and the coefficient 1/2 is introduced such
that,

∫∫
P (x, y)dxdy ≡ 1. (4.314)

The marginal PDF for x can then be found as,

P (x) =

∫ 1

0

P (x, y)dy =
1

2
[H(x+ 1)−H(x− 1)] =


0 x ≤ −1
1
2 −1 ≤ x ≤ 1

0 1 ≤ x
, (4.315)

where H is the Heaviside function. Similarly,

P (y) =

∫ 1

−1

P (x, y)dx =
1

2

1√
1− y . (4.316)

With this we can evaluate the conditional PDF as,

P (y|x) =
P (x, y)

P (x)
= δ(y − 1 + x2). (4.317)

In graphical form, we can illustrate the different PDFs as shown in Fig. 4.33:
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Figure 4.33 Illustration of conditional, marginal, and joint PDFs for
P (x, y) = δ(y − 1 + x2)

Recall from distribution analysis:∫
δ(y − a)dy = H(y − a) =

{
0 y < a

1 y > a
, (4.318)

with a = (1− x2) we have for indefinite integration:

∫
δ[y − (1− x2)]dy = H[y − (1− x2)]. (4.319)

By considering the bounds on y (y ∈ [0, 1]), we can find constraints on x such that
y − (1− x2) = 0 for y ∈ [0, 1]. This condition is always fulfilled for,

y ≥ (1− x2) − 1 ≤ x ≤ 1, (4.320)

with this we can rewrite,

H[y − (1− x2)] = H[y − (1− x)(1 + x)] (4.321)

=
1

2
[H(1− x) +H(1 + x)], (4.322)

or, in functional form,
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P (x) =


0 x < 1
1
2 −1 ≤ x ≤ 1

0 x > 1

. (4.323)

4.3.1.1. Common Probability Density Functions. Examples of distributions that are
commonly used for representation of turbulence-chemistry interaction in reacting flow situ-
ation can be characterized by knowledge of a few moments and the conditions under which
turbulence-chemistry interaction occurs. These include the following:

• Dirac Distribution:

P (φ) = αδ(φ− φ−) + (1− α)δ(φ− φ+), (4.324)

For premixed combustion, φ→ T , φ− → Tu, φ+ → Tb
• Gaussian PDF:

P (φ) =
1

2πσ2
exp

{
− (φ− φ)2

2σ2

}
, (4.325)

with σ the standard deviation and φ the mean value of φ. Some quantities that
can take Gaussian PDFs include the velocity.

• Beta PDF:

P (φ) =
Γ(a+ b)

Γ(a)Γ(b)
φa−1φb−1, φ ∈ [0, 1], (4.326)

with a = φγ, b = (1 − φ)γ, γ = φ(1−φ)

φ′2
− 1, and the gamma-function Γ(ξ) =∫∞

0
tξ−1e−tdt. Note that for mixture fraction, ζ = Z, and for the progress variable,

ξ = C.
• Log-normal PDF:

P (φ) =
1

φσ
√

2π
exp

{
− (lnφ− µ)2

2σ2

}
, φ > 0, (4.327)

• Statistically Most Likely PDF:
Consider the functional S,

S(P (φ)) = −
∫ ∞
−∞

P (φ) ln

(
P (φ)

Q(φ)

)
dφ, (4.328)

formally defined as the Kullback – Leibler divergence from distribution Q to
distribution P . In this context, note that Q represents a priori PDF that can be
used to bias the composition state. Minimizing S over all possible P (φ) provides
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an analytic expression for the so-called statistically most likely distribution that
minimizes the entropy,

PN (φ) = Q(φ) exp


N∑
j=0

ajφ
j

 , (4.329)

where the N-dimensional parameter vector a can be determined by constraining
the Kullback-Leibler divergence. Conservation of moments can be generally ex-
pressed as, ∫

P (φ)Ndφ = 1 (4.330)∫
φP (φ)Ndφ = φ (4.331)∫

(φ− φ)jPN (φ)dφ = φ′j , j = 2...N. (4.332)

Note that S → 0 implies φ′2 → 0, and conversely S →∞ implies φ′2 →∞.

4.3.2. Averaging Procedures.
4.3.2.1. Reynolds Averaging. For flows with constant density (isothermal systems), we

commonly employ a Reynolds-averaging procedure:

φ = φ+ φ′ → φ ≡ φ; φ′ ≡ 0 (4.333)

ρφ = (φ+ ρ′)(φ+ φ′) (4.334)

= ρφ+ ρφ′ with ρ′ = 0, ρ = const (4.335)

∴ ∇ · (ρu) = ∇ · (ρu) (4.336)

4.3.2.2. Favre Averaging. However, the application of the Reynolds-averaging to vari-
able density flows introduced additional unclosed terms that require modelling. This can
be shown by:

ρφ = ρφ+ ρφ′ + ρ′φ+ ρ′φ′ (4.337)

∴ ∂tρ+∇ · (ρu) = ∂tρ+∇ · (ρu+ ρ′u′) = 0, (4.338)

in which the density-velocity correlation ρ′u′ appears as an unclosed term that requires
modelling. To avoid density correlations, we therefore introduce the Favre Averaging (mass



48 4. TRANSITION AND TURBULENCE

averaging):

φ = φ̃+ φ′′ (4.339)

Definition: ρφ = ρφ̃→ φ̃ =
ρφ

ρ
; φ̃′′ = 0. (4.340)

We can prove this last statement in the following way:

φ̃′′ = 0 (4.341)

∴ φ̃′′ =
ρ(φ− φ̃)

ρ
=
ρφ

ρ
− ρφ̃

ρ
, (4.342)

Thus, we can reach the important conclusion that,

∂tρ+∇ · (ρu)→ ∇ · (ρũ) = 0. (4.343)

Note that Favre-averaging can be performed in volumetric or temporal senses by ex-
tending the averaging procedures:

φ̃ =
1

V

1

ρ

∫∫∫
V

ρφdV (4.344)

φ̃ =
1

T

1

ρ

∫ t+T

t

ρφdt (4.345)

φ̃ =
1

ρ

∫
ρφP (φ)dφ. (4.346)

4.3.3. Filtering. While Reynolds-Averaged-Navier-Stokes (RANS) methods and one-point
closures typically consider a statistical approach, Large-Eddy Simulation (LES) introduces
a time-resolved formulation in which the largest turbulent scales are resolved in space and
time while only the effects of the smallest scales are modeled. LES can be considered as
a low-pass filter of the instantaneous solution, where filtered quantities are obtained by
applying the following procedure:

Reynolds Filter:

{
φ(x, t) =

∫∞
−∞ φ(x− x′, t)G(x′; ∆)dx′

φ′(x, t)φ(x, t)− φ(x, t)
(4.347)

Favre Filter:

{
φ̃(x, t) = 1

ρ

∫∞
−∞ ρ(x− x′, t)φ(x− x′, t)G(x′; ∆)dx′

φ′′(x, t)φ(x, t)− φ̃(x, t)
. (4.348)
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More generally, by introducing a space-time filter, we can write,

φ(x, t) =

+∞∫∫
−∞

φ(x− x′, t− t′)G(x′, t′,∆x,∆t)dx
′dt. (4.349)

Typical filter operators include the following – it is often advantageous to convert to
a Fourier representation to understand the spectral properties of these filters – Fig. 4.34
explicitly illustrates the profile of these functions in spectral space.

• Top-Hat Filter:{
G(x− x′) = 1

∆ if (x− x′) ≤ ∆/L

Ĝ(κ) = sinc(κ∆/2)
(4.350)

• Gaussian Filter:{
G(x− x′) = ξ

π∆2

1/2
exp{− ξ(x−x

′)2

∆2 }
Ĝ(κ) = exp{− (∆κ)2

4ξ }
(4.351)

• Sharp Spectral Cut-off:
G(x− x′) = sin(κC(x−x′))

κC(x−x′) ; κC = π
4 }

Ĝ(κ) =

{
1 if κ < κC

0 else

(4.352)

4.3.4. Correlations, Energy Spectrum, and Turbulent Scales. Turbulence is char-
acterized by coherent spatio-temporal scales. To characterize coherent structures in the
case of Homogeneous Isotropic Turbulence (HIT) with no density variation, we can define
several important metrics. The two-point correlation function, for instance, is defined as,

Rφψ(ξ, t) = 〈ψ′(x, t)φ′(x+ ξ, t)〉, (4.353)

where 〈·〉 is the averaging operator over the homogeneous direction. We can also consider
the longitudinal velocity correlation coefficient,

f(ξ, t) =
3

2κ
R11(ξn̂1, t) =

〈u′1(x, t)u′1(x+ ξn̂1, t)〉
〈u′1u′1〉

, (4.354)

and the transverse velocity correlation coefficient,

g(ξ, t) =
3

2κ
R22(ξn̂1, t) =

〈u′2(x, t)u′2(x+ ξn̂1, t)〉x
〈u′1u′1〉x

. (4.355)
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Figure 4.34 Filter profiles in spectral space.

Note that the correlation coefficient is simply the normalized correlation function:

fψ,φ =
〈ψ′(x, t)φ′(x+ ξn̂1, t)〉x√
〈ψ′2(x, t)〉〈ψ′2(x+ ξn̂1, t)〉

. (4.356)

Let us now consider spatial scales that can be derived from the velocity correlation
coefficient (i.e. the longitudinal autocorrelation):

Rij(r, t) = 〈ui(x, t)uj(x+ ξn̂1, t)〉x. (4.357)
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Figure 4.35 Two-point correlation coefficients in axial direction (dashed
line) and along the stoichiometric surface (solid lines) for different quanti-
ties.

With this, the integral scales defining larger eddies in the flow can be evaluated by inte-
grating the longitudinal and transverse autocorrelations from Eq. (4.354) and Eq. (4.355):

L11(t) =

∫ ∞
0

f(ξ, t)dξ (4.358)

L22(t) =

∫ ∞
0

g(ξ, t)dξ. (4.359)

The Taylor microscale is between the integral scale and the Kolmogorov scale (L〉λ〉η),
but does not have a clear physical interpretation,

λf (t) =

(
−1

2

∂2f

∂ξ2
(0, t)

)−1/2

(4.360)

λg(t) =

(
−1

2

∂2g

∂ξ2
(0, t)

)−1/2

≡ 1√
2
λf (4.361)

By introducing these scales, we can define the following relations:
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Figure 4.36 Spatial evolution of integral length scales in axial direction
(dotted lines with circles) and along the stoichiometric surface (solid lines
with symbols). The solid and dotted lines correspond to the regression
lines.

Integral Scale Taylor Scale Kolmogorov Scale

Length Lu = k3/2

ε λg =
(
10kνε

)1/2
η =

(
ν3

ε

)1/4

Time τu − k
ε τλ =

(
15νε

)1/2
τη =

(
ν
ε

)1/2
Velocity uu = k1/2 uλ =

(
2
3k
)1/2

uη = (εν)1/4

Turbulent Reynolds Number ReL = k2

εν Reλ =
u′λg
ν Reη = 1

Table 4.31 Turbulent scales.

• Turbulent Kinetic Energy: k = 1
2u
′
iu
′
i = 1

2

∑
i u
′2
i

• Turbulent Dissipation Rate: ε = ν∂ku′i∂ku
′
i = 2νSijSij

For the description of turbulent flows, we can introduce the following scales:
Other important relations include,
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Figure 4.37 Comparison of computational results and experimental
data for hydroxyl radical correlation (a) two-point correlation coefficient
and (b) integral length scale. The dotted line in (a) shows the location

where (Z̃) = Zst.

Figure 4.38 Change in correlation with separation distance.

• Ratio of Transverse Taylor Microscale to Turbulence Integral Scale:
λg
Lu
∼
√

10Re
−1/2
L

• Ratio of Kolmogorov and Turbulent Integral Scales: η
Lu

= Re
−3/4
L



54 4. TRANSITION AND TURBULENCE

• Taylor Scale Reynolds Number: Reλ =
u′λg
ν =

(
2
3k
)1/2 λg

ν =
(

20
3 ReL

)1/2
Integral time scales are evaluated in analogy using auto-correlation function:

ρij =
〈u′i(x, t)u′j(x, t+ ζ)〉

〈u′iu′j〉
(4.362)

τ =

∫ ∞
0

ρ(t)dt. (4.363)

4.3.5. Turbulence Energy Spectrum. For homogeneous turbulence, we can introduce
the velocity spectrum tensor Φ, which is related to the Fourier transformation of the two-
point autocorrelation function.

Φ
ij

(κ, t) =
1

(2π)3

∫∫∫ ∞
−∞

Rij(ξ, t) exp{−iκ · ξ}dξ (4.364a)

Rij(ξ, t) =

∫∫∫
φij(κ, t) exp

{
−κ · ξ

}
dκ (4.364b)

.
Using this result, Reynolds stresses are obtained for ξ → 0 as,

Rij(0, t) = 〈uiuj〉 =

∫∫∫ ∞
−∞

Φij(κ, t)dκ. (4.365)

Additionally, the definition of the turbulent kinetic energy spectrum can be useful in mod-
eling and analysis of turbulence,

Ei(κ, t) =
1

2

∫∫∫ ∞
−∞

Φii(κ, t)δ(κ− |κ|)dκ. (4.366)

For isotropic turbulence, the velocity spectrum tensor is related to the turbulent energy
spectrum:

Φ
ij

(κ, t) =
Eu(κ, t)

4πκ2

(
δij −

κiκj
κ2

)
. (4.367)

The turbulent kinetic energy is thus,

k(t) =

∫ ∞
0

Eu(κ, t)dκ =
1

2
〈u′iu′i〉. (4.368)

and the turbulent energy dissipation is,

ε(t) = 2ν

∫ ∞
0

Eu(κ, t)κ2dκ. (4.369)
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Figure 4.39 Turbulence energy spectrum.

4.3.6. Model Velocity Spectrum. It is convenient to model the turbulence energy spec-
trum of several key reasons:

• To provide initial conditions for DNS
• Closure for turbulence model (e.g. rapid distortion theory)
• Estimate energy at smallest scales
• Comparison with experiments

Example of model spectra include:

• Pao Spectrum:

E(κ) = αε2/3κ−5/3 exp

(
−3α

2
κ1/3

)
(4.370)

• Von Karman Spectrum:

E(κ) = αε2/3L5/3 L4κ4

(1 + L2κ2)17/6
(4.371)

• Pope:

18

55
K0ε

2/3κ−5/3 (4.372)
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• Passot-Pouquet Spectrum:

E(κ) =
16u′2

κe

√
2

π

(
κ

κe

)4

exp

{
−2

(
κ

κe

)2
}

(4.373)

with u′ =
√

2k/3, κe = 2π/Lu

The general form of the spectrum can be written as:

Eu(κ) = Cε2/3κ−5/3fL(κLu)fη(κη), (4.374)

where fL and fη are cutoff functions, fL ∼ κγ , fη = exp{−(κη)α}, α ∼ 4, and γ = 2...4.

Discussion Box 9: Combustion Noise in Turbulent Flames
One of the key issues in practical combustion systems is the emission of large amounts of noise.
In fact, due to significant reduction in hydrodynamic jet noise and anticipated advancements
in the noise suppression of turbomachinery, combustion noise is becoming a leading contribu-
tor to the overall aircraft noise emission, and is now considered as a lower aircraft noise limit.
Furthermore, advanced combustion concepts, such as rich-quench-lean combustors, staged fuel
injection systems, and lean premixed prevaporized combustion can lead to considerable increase
in noise emissions. The main reasons for this are that lean premixed and stratified combustion
modes are receptive to combustion-driven oscillations, and spatially inhomogeneous heat release
and turbulence fluctuations can amplify the noise generation in staged combustion systems. In
the work of [34], the authors use fundamental quantities from turbulent combustion (such as
the integral scale and two-point correlation) to arrive at key insights about the turbulent and
scalar structures in a reacting flowfield simulated via LES. Thus, these fundamentals of turbulent
combustion are not merely academic definitions – they often represent key points of analysis and
comparison in assessing flows a manner that can have direct impact on the design of practical
systems such as aircraft engines.

4.4. Description of Scalar Turbulent Mixing and Scales of Scalar Mixing

4.4.1. Phenomenological Description. Here we will only focus on conserved scalars. A
conserved scalar refers to a quantity that is neither consumed nor produced, and therefore
does not contain a source term in its transport equation. In contrast, a passive scalar is
a scalar that does not affect the flow field. For the case of constant density, a conserved
scalar is identical to a passive scalar.

Dtφ = α∇2φ, (4.41)

or

Dtφ =
1

ReSc
∇2φ (4.42)

where Sc = ν/α is the Schmidt number describing the ratio of kinematic viscosity to
molecular species diffusivity. To describe scalar mixing, we can introduce two scales:
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(1) Scalar Integral Scale:
In analogy to the inertial velocity scale Lu defined in Tab. 4.31, this scalar integral
scale. Lφ, characterizes the largest structures in a scalar field. The evolution of
Lφ is determined by the combination of initial conditions and turbulent mixing.
This length scale is defined as,

Lφ =

∫ ∞
0

fφ(ξ, t)dξ, (4.43)

with,

fφ =
〈φ′(x, t)φ′(x+ ξêξ, t)〉

φ′2
. (4.44)

Remembering that Lu = k3/2/ε and Lφ = (α/χφ)1/2 with χφ = 2α|∇φ|2, it is
important to realize that models for scalar mixing must reproduce the interaction
between Lu and Lφ.

(2) Batchelor Scale:
The Batchelor scale λB characterizes the smallest scalar eddies where molecular
diffusion is balanced by turbulent mixing,

λB =
1√
Sc
η, (4.45)

This expression which is obtained by recognizing,

Sc =
ν

α
∼ η2/τη
λ2
B/τφ

, (4.46)

and setting the timescales τη and τφ equal. Note that for gaseous combustion,
Sc ∼ 1, while Sc ∼ 1000 for liquids [18].

Figure 4.41 Effect of Schmidt number on Batchelor scale.
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A few observations are now in order. First, while Sc ∼ 1 in gas-phase flows, in the
liquid phase Sc � 1 in general, as the scalar field contains fine-scale structures at scales
smaller than the velocity field. Further, from a physical standpoint, when lφ � λB , molec-
ular diffusion is negligible and an initially non-premixed field will remain segregated. The
important implication here is that for turbulent reacting flows, the chemical source term
will be coupled to turbulent mixing. At high Reynolds numbers in particular, the small
scales of the scalar fields are isotropic, and evolve on timescales that are short compared
to the large scales. Indeed, the characteristic timescales for mixing when lφ > λB are fully
determined by the turbulent flow.

As a result, as Sc→∞, Eq. (4.41) reduces to the equation,

∂tφ+ u · ∇φ = 0, (4.47)

as turbulence only changes the length-scale distribution (or the scalar energy spectrum).
With α 6= 0, we have slow mixing, and stratified ligaments or lamella structures can form,
as schematically illustrated in Fig. 4.41.

Figure 4.42 Scalar Mixing in the Limit of α→ 0 and α 6= 0.

We can now estimate the scalar mixing rate γ from the spectral energy transfer,

γ(lφ) =
1

τφ

(
Lφ,0
lφ

)2/3 [
1

s

]
, (4.48)

where τφ is a turbulent mixing time and Lφ,0 is the initial scalar length scale. We can
consider large-scale (i.e. integral-scale) mixing in a similar fashion. In this case, lφ = Lu,
τ = τu = k/ε, and Lφ,0 = Lu. Thus, we have,

γ(Lu) =
ε

k
(4.49)
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We can also consider mixing in the inertial range (Kolmogorov mixing), where,

γ(η) =
( ε
ν

)1/2

= Re
1/2
L γ(Lu); lφ ≤ η, (4.410)

with τη =
(
ν
ε

)1/2
. Finally, for the inertial subrange, we have,

γ(lφ) =
1

τη

(
η

lφ

)2/3

, η ≤ lφ ≤ Lu (4.411a)

=
( ε
ν

)1/2
(
η

lφ

)2/3

(4.411b)

At high Reynolds numbers, Kolmogorov mixing is much faster than integral scale mixing,
but overall mixing is controlled by integral scale mixing (i.e. integral scale mixing is rate-
limiting). The mixing time tmix can then be defined as,

lφ(t = 0) = Lφ → lφ(tmix) = λB . (4.412)

A simple mixing model can then be developed to evaluate tmix,

∂lφ
dt

= −γ(lφ)lφ (4.413)

(4.414)

Denoting tK as the time required for lφ to reduce from Lφ to η, we can use Eq. (4.413) and
Sec. 4.4.1 to write,

tK =
3

2

[(
Lφ
η

)2/3

− 1

]
τη, (4.415)

=
3

2

(
Lφ
Lu

)2/3

τu −
3

2
τη. (4.416)

At high Reynolds numbers, τη � τu, meaning that,

tK ≈
3

2

(
Lφ
Lu

)2/3

τu (4.417)

In similar fashion, letting tB denote the time required for lφ to reduce from η to λB , we
find that,

tB =
1

2
ln(Sc)τη, (4.418)
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implying that the overall mixing time can be approximated as,

tmix ≈
3

2

(
Lφ
Lu

)2/3

τu +
1

2
ln(Sc)τη (4.419)

A few quick observations are now in order. First, the effects of the Schmidt number
are only relevant for Sc � 1. Second, the scalar-to-velocity-length-scale ratio Lφ/Lu is a
key parameter in scalar mixing. Third, for the case that Lφ = Lu, the mixing time scale is
directly controlled by the turbulent flow and tmix = τu.

The description of scalar mixing can also be represented using a statistical method.
Since the scalar field and the velocity field are directly coupled, it is convenient to introduce
a one-point velocity composition PDF,

Pφ(ψ) =

∫
Pu,φ(u, ψ)dV =

Pu,φ(v, ψ)

Pu|φ(v|ψ)
, (4.420)

with u a random variable and v a sample variable. We can consider the binary mixing
situation, wherein at t = t0. we have,

Pφ(ψ) = αδ(ψ) + (1− α)δ(1− ψ). (4.421)

Figure 4.43 Binary mixing PDFs.

In this case, the mean is:

Mean: 〈φ(x, 0)〉 =

∫ 1

0

ψPφ(ψ)dψ = 〈φ(x, t)〉 (4.422)

Variance: 〈φ′2(x, t)〉 =

∫ 1

0

(ψ − 〈φ〉)2Pφ(ψ)dψ. (4.423)
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At this point, we can use Pφ to drive closure models. For this, consider a generic function
S(ψ). We can compute a statistical moments by integrating over Pφ,

〈S(x, t)〉 =

∫
S(ψ)Pφ(ψ;x, t)dψ. (4.424)

This closure model is the foundation of presumed PDF models and topology-based com-
bustion models for modeling turbulence-chemistry interaction.

4.4.2. Scalar Energy Spectrum. Similar to the kinetic energy spectrum of Sec. 4.3.6, we
can introduce a scalar energy spectrum Eφ. From the previous analysis, we can anticipate
that Eφ has a similar structure in the inertial range as Ek and, dependent on Lφ and sL,
will behave differently in the energy-containing and dissipative range. A starting point for
understanding this is the definition of a scalar spatial correlation function,

Rφ(ξ, t) = 〈φ′(x, t)φ′(x− ξ, t)〉x, (4.425)

and the scalar spectrum,

Φφ(κ, t) =
1

(2π)3

∫∫∫
Rφ(ξ, t) exp

{
−iξ · κ

}
dξ (4.426)

Rφ(ξ, t) =

∫∫∫
Φφ(κ, t) exp

{
iξ · κ

}
dκ. (4.427)

With zero-separation (ξ = 0), we obtain the scalar variance,

Rφ(0, t) = 〈φ′2〉 =

∫∫∫
Φφ(κ, t)dκ. (4.428)

The one-dimensional scalar spectrum is,

Eφ(κ, t) =

∫∫∫
Φφ(κ, t)δ(|κ| − κ)dκ. (4.429)

and by introducing a spherical coordinate system, we obtain by transforming,

dκ = κ2 sin θdκdαdθ (4.430)

Eφ(κ, t) = 4πκ2Φφ(κ, t). (4.431)

From this, we can derive some useful definitions within the realm of isotropic turbulence:

• Scalar variance:

〈φ′2〉(t) =

∫ ∞
0

Eφ(κ, t)dκ (4.432)



62 4. TRANSITION AND TURBULENCE

• Scalar Integral Length Scale:

Lφ(t) =
π

2〈φ′2〉

∫ ∞
0

Eφ(κ, t)

κ
dκ (4.433)

• Scalar Dissipation Rate:

χφ = 2α

∫ ∞
0

κ2Eφdκ (4.434)

• Scalar Mixing Time:

τφ =
2〈φ′2〉
χφ

(4.435)

With these definitions, we can introduce a scalar model spectrum. Note that this spectrum
is similar to the kinetic energy spectrum, but there are many and different expressions.
The most common ones are due to Corrsin, Obuknov, and Batchelor et al. The formulation
of Eφ requires consideration of Schmidt number effects (e.g. for Sc � 1, κB =

√
Scκη).

The inertial subrange is not affected by viscosity and diffusivity, and will be similar for Eφ
and Eu. Further, the scalar energy-containing range will follow the inertial sub-range. At
high ReL, Eφ will be dominated by the energy-containing and inertial/inertial-convective
sub-ranges. The model scalar energy spectrum can be expressed as,

Eφ(κ) = COCχφε
−3/4ν5/4(κη)−β(κη)fL(κLu)fB(κη), (4.436)

where COC is the Obukhov-Corrsin constant (≈ 2/3) and β is a scaling exponent such that,

β = f(Sc) =

{
5/3 for κη → 0

1 for κη →∞ , (4.437)

and fL, fB are cutoff functions. Further,

β = 1 +
2

3
[7− 6fD(κη)] fη(κη) (4.438)

d =
1

2
+

1

4
fη(κη), (4.439)

fD = (1 + CDSc
−d(κη)/2κη) exp

{
−CDSc−d(κη)/2κη

}
(4.440)

fB = exp
{
−CdSc−2d(κη)(κη)2

}
, (4.441)

with fD the diffusive-scale cutoff function, fB the Batchelor scale cutoff function, and
CD = 2.59. The value of cd is dependent on Reynolds and Schmidt numbers for Sc < 1,
but takes a value of 2 for Sc > 1. More information can be found in [22].
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Figure 4.44 Illustration of turbulent scalar spectrum.

By comparing the scalar and turbulence time scale, one can introduce the mechanical-
to-scalar time scale ratio Cφ,

Cφ =
τu
τφ

(4.442)

=
k

ε

χφ
〈φ′2〉 , (4.443)

with τu = k/ε and τφ = 〈φ′2〉/χφ.
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Figure 4.45 Effect of Schmidt and Reynolds number on time scale ratio Cφ
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Discussion Box 10: Turbulent Scalar Transport and Mixing
Even to the present day, the finer points of turbulent scalar transport and mixing remain both
important and a topic of significant research. Early work [3] contains a detailed theoretical
investigation of the form of the scalar spectrum for temperature, taking into account the effects
of both convection and molecular diffusion. From these results, the dominant feature of the
action of the turbulent motion on the temperature distribution is a continuous reduction of
the length-scale of temperature variations. The random convection of material elements of the
fluid is inevitably accompanied by distortion of these elements, and, in the absence of molecular
transport, a (statistical) increase in the gradients of temperature. It is also found that the
continuous increase in the magnitude of temperature gradients due to random convection will
ultimately be checked by the smoothing action of thermal diffusion, and no further refinement
of the temperature distribution can occur; in this way, a length-scale characterizing the smallest
temperature ‘eddies ’ can be determined. Unfortunately for Batchelor, no measurements were
available for comparison with the theoretical results.
In recent years, the advent of laser diagnostics has enabled the scientific community to learn
a great deal more about turbulent scalar transport. The work of [18] and [7], for instance,
demonstrates remarkable visualizations of layer-like fine structures in high Reynolds number flows.
The resolution achieved is finer than the local strain-limited molecular diffusion scale, allowing
the fine structure of Sc� 1 molecular mixing in turbulent flows to be directly determined. Note
that due to the high Schmidt number, these flows were often inaccessible to Direct Numerical
Simulation (DNS) at the time these studies were performed.
Perhaps the most interesting result of these studies is the fact that the sparseness of the scalar
energy dissipation field indicates that a very small proportion of the flow is responsible for a
very large proportion of the mixing, implying that there may be a way to engineer more effective
mixing via direct utilization of turbulent mixing structures. Further, the demonstration that
the fine-scale mixing structures are asymptotically independent of Reynolds number in the high-
Reynolds-number limit is fundamentally interesting in light of asymptotic theory about turbulent
mixing.
Even more recently, fundamental problems in turbulent scalar mixing have become accessible
to simulation. The work of [11], for instance, uses an LES-based method to numerically study
passive-scalar mixing by a turbulent shear flow at high Schmidt number (Sc = 1024). This work
was originally intended to address inconsistencies between previous studies concerning the forma-
tion of power-law scaling in the scalar-energy spectra at viscous-convective scales. Importantly,
the scalar timeseries and spatial data reported in this work produced the first power spectra from
a LES shear-flow study that exhibits κ−1 scaling at viscous-convective scales originally predicted
by [3] and consistent with DNS of simpler Sc� 1 flows.





CHAPTER 5

Fundamentals of Combustion Modeling

To study turbulent combustion, it is instructive to review the asymptotic flame structure
of two flames:

(1) Premixed Flames: Fuel and air are mixed prior to combustion
(2) Diffusion/Non-premixed Flames: Fuel and oxidizer are separated

5.1. Activation Energy

Combustion is controlled by chemical reactions, which have large activation energy
barriers. Consider, for instance, the exothermic reaction,

A + B→ C + D. (5.11)

as diagrammed in Sec. 5.1.

Figure 5.11 Activation Energy Diagram.

67
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The activation energy EA is typically much larger than temperature change due to heat
release,

EA
RTb

=
TA
Tb
, (5.12)

where TA is the activation temperature and Tb is the characteristic flame temperature. In
the large activation energy limit, this implies,

TA
Tb

= Ze� 1. (5.13)

Since the chemical reaction rate is a function of TA/T ,

w = kf [Ai]
ν′i ; kf = AT β exp

{−EA
RT

}
, (5.14)

this implies that the chemical source term is strongly sensitive to temperature,

w ∼ exp

{
−TA
T

}
→ ∂w

∂T
=

(
TA
T

)
w

T
. (5.15)

By expanding the exponential source term,

w ∼ exp

{
−TA
T

}
= exp

{
−TA
Tb

(
Tb
T

+ 1− 1

)}
(5.16)

= exp

{
−TA
Tb

}
exp

{
−TA
Tb

(
Tb − T
T

)}
(5.17)

= exp {−Ze} exp {−ZeCe} , (5.18)

where we recall that Ze ∼ O(10) and Ce ∼ O(1). As a result of the large activation energy
and strong temperature sensitivity of reaction rates, flames are confined to thin regions of
O(10 µm). In the reaction zone, the temperature is sufficiently high and the residence time
is long enough so that there is sufficient time for reactants to converted by the chemical
reaction. Because of similarity with thin boundary layer theory, different analytic methods
have been developed to study flame characteristics in the asymptotic limit:

• Damköhler number asymptotics [DNA] (Fendell, Williams), e.g. [21]
• Large activation energy asymptotics [AEA] (Zeldovich, Liñnán, Buckmaster &

Williams), e.g. [40]
• Rate-ratio asymptotics [RRA], e.g. [47]

The results of DNA were the basis for flamelet models in turbulent combustion, while AEA
considers single step chemistry and RRA considers a multi-step chemistry mechanism to
characterize flame structure.
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5.2. A Reduced Methane-Air Reaction Mechanism

Of fundamental importance to combustion is methane oxidation, representing the sim-
plest hydrocarbon fuel. Detailed methane pathways can be separated into C1 and C2 low
temperature pathways with initial temperatures between 300K and 700K [64]. Sec. 5.2 gives
a schematic overview of a reduced methane reaction mechanism.

Figure 5.21 Reduced reaction pathways for methane.

A reduced 4-step reaction mechanism derived by Peters and Williams [47] is obtained
by invoking the following assumptions:

• Steady state for O, OH, HO2, CH3, CH2O, and CHO.
• Partial equilibrium

Development of the reaction mechanism can be summarized as follows:
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(1) Fastest reactions in the C1-chain:

CH4 + H ⇀ CH3 + H2 (R11)

CH3 + O ⇀ CH2O + H (R13)

CH2O + H ⇀ CHO + H2 (R17)

CHO + M⇀ CO + H + M (R22)

CH4 + O ⇀ CO + 2H2 (A)

(2) Taking partial equilibrium for:

H + OH
 O + H2 (5.21)

H + H2O
 CO+H (5.22)

2H + H2O
 O + 2H2 (RB)

Combining reactions Eq. (A) and Eq. (RB) gives,

CH4 + 2H + H2O
 CO + 4H2 (RI)

(3) Combine the following reactions:

CO + OH
 CO2 + H (5.23)

H + H2O
 OH + H2 (5.24)

Total: CO + H2O
 CO2 + H2 (II)

(4) Combine the following reactions:

O2 + H + M ⇀ HO2 + M (R5b)

9 OH + H2O ⇀ H2O + O2 (R9)

H + H2O⇀ OH + H2 (R3b)

Total: 2H + M ⇀ H2 + M (RIII)

(5) Combine the following equations:

O2 + H
 OH + O (R1)

O + H2 
 OH + H (R2)

OH + H2
 H2O + H (2x) (R3)

Total: O2 + 3H2 ⇀ 2H + 2H2O (RIV)
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By combining these results, we obtain a four-step mechanism:

CH4 + 2H + H2O ⇀ CO + 4H2 (Propagation) (RI)

CO + H2O
 CO2 + H2 (Water-Gas Shift) (RII)

2H + M ⇀ H2 + M (Recombination/Termination) (RIII)

O2 + 3H2 ⇀ 2H + 2H2O (Branching) (RIV)

Rate coefficients for reactions I-IV are obtained from the following reaction sequence:

CH4 + H ⇀ CH3 + H2 (RI-11)

CO + OH
 CO2 + H (RII-10)

H + H2O
 OH + H2 (RII-3)

H + O2 + M ⇀ HO2 + M (RIII-5)

H + O2 ⇀ OH + O (RIV-1)

5.3. Premixed Flame Structure

5.3.1. General Characteristics of Methane Flames. In a premixed flame, fuel and
oxidizer are mixed prior to entering the combustion chamber. Premixing can only be
facilitated below a certain temperature, known as the cross-over temperature (Tc), so that
branching reactions are negligible. Example applications include Bunsen burners, lean
premixed gas turbine combustors, and spark ignition engines.

Formation 
of Triple
Flame

Heat Loss to
 Burner Rim

Figure 5.31 Bunsen flame diagram.

A one-dimensional representation of premixed flame structure is obtained by considering
an unstrained planar flame.
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Fresh Gas Preheat Zone Reaction Zone

Oxidizer

Fuel

Temperature

CO

0

Secondary
    Layer

Inner 

Oxidation Layer

Intermediate
  Products

Figure 5.32 Planar flame structure.

Figure 5.33 1-D calculation results for a premixed flame at Φ = 1.0.
Observe the relative thicknesses of the inner and secondary layers.

Note that there are several key definitions here:

Flame Thickness: δL =
α

s0
L

(5.31)

Inner Layer Thickness: O(δ) (5.32)

Outer Layer Thickness: O(ε) (5.33)

Preheat Region: O(1) (5.34)
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As a specific example, we can further examine the flame structure of a lean methane-
air flame. A diagram of flame structure can be found in Fig. 5.32 while analogous 1-
D calculation results are presented in Fig. 5.33 We can interpret the flame structure by
considering the reduced four-step reaction sequence of Eq. (RI) - Eq. (RIV).

• Inner (Fuel-Consumption) Layer: Fuel is attacked by H radicals via the prop-
agation reaction of Eq. (RI). H radicals are formed through the branching path
Eq. (RIV). A characteristic cross-over temperature Tc can be identified through
competition between branching and chain termination:

O2 + H
 OH + O (Branching) (R1)

O2 + H + M ⇀ HO2 + M (Termination) (R5)

CH4 + H ⇀ CH3 + H2 (Termination/Propagation) (R11)

The cross–over temperature is typically around 500K larger in methane systems
compared to hydrogen-oxygen systems, which helps to explain the low reactivity of
methane oxidation. The thickness of the inner layer is estimated from asymptotics
as:

lδ ∼ δ · δL ∼ 0.1 · 200µm ∼ 20µm, (5.35)

which decreases with increasing pressure (δ ∼ p−1)
• Oxidation Layer: The oxidation layer is controlled by the water-gas shift re-

action of Eq. (RII), the termination reaction of Eq. (RIII), and the branching
reaction of Eq. (RIV) reactions. These reactions involve oxidation of CO to CO2

and H2 oxidation to H2O. The thickness of the oxidation layer is:

lε ∼ εδL ∼ 3lδ ∼ 60µm; ε ' 0.3. (5.36)

5.3.2. Asymptotic Flame Structure Analysis. Let us now consider a planar un-
strained flame under the assumption of unity Lewis number and one-step reaction chemistry,
schematically shown in Fig. 5.34. This is the same configuration presented in Fig. 5.33; the
derivation is due to Zeldovich, Frank-Kamenetski, and Von Karman.

Reaction chemistry is represented by a first-order irreversible reaction,

F + O→ P, (5.37)

with reaction rate ṁF = ρYFA exp
{
−EA
RT
}

. We utilize the following assumptions:

• Stationary flow with respect to the flame location
• Unity Lewis number Le = 1
• Low Mach number deflagration (p =const)
• Calorically perfect gas (cp =const)
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Unburned Burned

Figure 5.34 1D Flame Diagram.

The governing equations of Sec. 2.6.4 can thus be rewritten as:

dx(ρu) = 0 (5.38)

ρs0
LdxYf = dx(ραdxYF )− ρYFA exp

{
−EART

}
(5.39)

ρs0
LdxT = dx

(
λ

cp
dxT

)
+
ρQYFA

cp
exp

{
−EART

}
, (5.310)

where Q is the heat release. By combining conservation equations for species and temper-
ature, we can obtain a total enthalpy equation

H =
YF
YF,u

+
cp(T − Tu)

QYF,u
(5.311)

with transport equation,

ρs0
LdxH = dx(ραdxH) (5.312)

By introducing the non-dimensional fuel mass-fraction and temperature:

Y =
YF
YF,u

and Θ =
cp

QYF,u
(T − Tu), (5.313)
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we can write,

H = Y + Θ. (5.314)

Boundary conditions are then:

x→ −∞ : H = 1; Θ = 0, Y = 1 (5.315)

x→ +∞ : H = 1; Θ = 1, Y = 0 (5.316)

A transformation of coordinate systems,

ξ =

∫ x

0

ρs0
L

λ
dx =

∫ x

0

s0
L

α
dx;Le =

λ

cpρα
, (5.317)

where α is the diffusion coefficient. We can rewrite,

dx
dξ

dx
dξ =

s0
L

α
dξ; dx(ραdx) =

ρs0
L

α
d2
ξ (5.318)

Note that δL = α/s0
L, and the source term can be expressed as,

exp

{
−TA
T

}
= exp

{
−TA
Tb

(
Tb
T

+ 1− 1

)}
(5.319)

= exp

{
−TA
Tb

(
Tb

Θ(Tb − Tu) + Tu
+ 1− 1

)}
(5.320)

= exp

{
−TA
Tb

}
exp

{
−TA
Tb

(
(Tb − Tu)(1−Θ)

Θ(Tb − Tu) + Tu

)}
(5.321)

= exp

{
−Ze
Ce

}
exp

{
− Ze(1−Θ)

(1− Ce)(1−Θ)

}
(5.322)

By introducing the burning-rate eigenvalue (a dimensional parameter):

Λ =
αA

s02
L

exp

{
−Ze
Ce

}
, (5.323)

we can rewrite the reduced set of equations as,

dξΘ = d2
ξΘ + ΛY exp

{
− Ze(1−Θ)

1− Ce(1−Θ)

}
, ξ =

x

s0
L

(5.324)

Θ + Y = H(= 1)→ Y = 1−Θ (5.325)

with boundary conditions:

ξ → −∞ : H = 1; Θ = 0, Y = 1 (5.326)

ξ → +∞ : H = 1; Θ = 1, Y = 0 (5.327)
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In the following, we consider the parametric limit Ze → ∞ (i.e. activation energy asymp-
totics), where Ze characterizes the temperature sensitivity of the overall reaction rate. From
the following,

w = (1−Θ) exp

{
− Ze(1−Θ)

1− Ce(1−Θ)

}
, lim
Ze→∞

w → 0 (5.328)

we can consider the specific cases:

(1)

ξ � 0 : dξ → 0; (1−Θ)� 1

Ze
(5.329)

Region of of low temperature and frozen chemistry called a convection diffusion
zone

(2)

ξ � 0 : dξ → 0; Θ→ 1; Y → 0 (5.330)

This is known as the post-flame zone.
(3)

ξZe ∼ O(1) : (1−Θ) = Y ∼ 1

Ze
; Θ ∼ Ze− 1

Ze
(5.331)

Known as the reactive-diffusive zone

Detailed insight can be obtained through balance analysis:

• Convection-diffusion zone: Governing equations reduce to:

dξΘ = d2
ξΘ, with: ξ → −∞; Θ = 0, (5.332)

and exponentially small reaction term. The solution to this equation is simply,

Θ = exp{ξ} (5.333)

Y = 1− exp{ξ}, ξ ≤ 0. (5.334)

This region is referred to as the preheat zone, where the thickness of the preheat
zone, ∆ξ ∼ O(1), can be written as,

∆ξ =

∫ δ0L

0

s0
L

α
dx =

s0
L

α
δ0
L (5.335)

• Reaction-diffusion zone: The region in which (1 − Θ) ∼ Ze−1 (reaction term
is exponentially not small). We therefore introduce an inner scale variable,

η = Ze(ξ − ξ0) ∼ O(1) (5.336)
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0

Reactive-
Diffusive 
Zone

Convective-
Diffusive 
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Post-Flame Zone

Slope Matching

Figure 5.35 Matched asymptotic analysis.

From this, we can confirm that,

lim
Ze→∞

dη

dξ
→∞, (5.337)

meaning that the inner layer becomes infinitely thin in the high activation energy
limit. We then expand the dependent variable as Y ∼ y/Ze by assuming that fuel
consumption is O(1/Ze),

y = Ze(1−Θ)→ Θ = 1− y

Ze
, (5.338)

in the inner layer structure. Further, this implies:

dξ =
dη
dξ
dη = Zedη; dΘ = − 1

Ze
dy (5.339)

=
1

Ze
dηy = −d2

ηy +
Λ

Ze2
y exp

{
− y

1− Ce
Zey

}
. (5.340)

Further, Ze→∞ requires that Λ
Ze2 ∼ O(1), giving the expansion,

Λ = Ze2[Λ0 +
∑
i

Ze−iΛi ]. (5.341)
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Retaining O(1) terms gives the reaction-diffusion balance (in the limit as Ze →
∞):

d2
ηy = Λiy exp{−y}. (5.342)

with conditions η →∞ : y → 0. By matching slopes, such that dηy = C at η = 0.,
we can rewrite the diffusion reaction equation to eliminate spatial dependence:

dy2

dη2
=
dy

dη

d

dy

(
dy

dη

)
=

1

2

d

dy

(
dy

dη

)2

. (5.343)

With this, we can rewrite the diffusion equation as,

1

2

d

dy

(
dy

dη

)2

= Λ0y exp{−y}, (5.344)

and integrate with boundary conditions,

η →∞ : y → 0 (all fuel is consumed) (5.345)

η → −∞ : y →∞ (for matching conditions), (5.346)

such that,

1

2

(
dy

dη

)2

= Λ0

∫ y

0

y′ exp{−y′}dy′ = Λ0[1− exp{−y}(1 + y)], (5.347)

where we have used the identity
∫∞

0
y′ exp{−y′}dy′ = Γ(2) = 1. At the matching

point, we require that,

dy

dη
= C (Here, we set C = 1), (5.348)

and evaluating the above equation at η → −∞→ y →∞ gives,

Λ0 =
1

2

Λ

Ze2
→ Λ =

1

2
Ze2 (5.349)

∴ s0
L =

(
2DA

Ze2
exp

{
−Ze
Ce

})1/2

, (5.350)

where we have used the definition of Λ from Eq. (5.323).

Thus, this analysis shows that the flame speed is dependent on the activation energy,

δF =
δ0
L

Ze
(5.351)

Further, flame speed is a function of equivalence ratio φ. The maximum flame speed is
obtained at φ > 1 since the heat capacity of the diatomic product gas composition is
slightly lower than that characteristic of the lean side.
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Figure 5.36 Flame speed vs. equivalence ratio.

5.4. Diffusion Flame Structure

5.4.1. General Characteristics of a Diffusion Flame. In a diffusion flame, fuel and ox-
idizer enter the combustion chamber prior to mixing and combustion. Mixing and combus-
tion are facilitated by a combination of turbulent mixing and molecular diffusion. Chemical
reactions take place where reactants are mixed at the molecular level. In terms of relevant
timescales,

τMixing � τCh → Da =
τMixing

τCh
→∞. (5.41)

In this framework, it is easily seen that diffusion flames are controlled by molecular mix-
ing and diffusion. Exceptions to this include conditions near extinction, at ignition, and
combustion in vitiated flows. Examples of diffusion flames include candles and counter-
flow/opposed-jet flames

5.4.2. Structure of Diffusion Flames. We now consider the counter-flow diffusion
flame, diagrammed in Fig. 5.41. For an analysis of flame structure, we can again use the
4-step reaction mechanism from Eq. (RI) - Eq. (RIV). The outer structure of this diffusion
flame is the Burke Schumann solution governed by the overall one step reaction,

CH4 + 2O2 → CO2 + 2H2O, (5.42)

with the flame sheet position at Z = Zst The inner structure, on the other hand, consists of
a thin H2 −CO oxidation layer of thickness O(ε) and thin inner layer of thickness O(δ) on
the rich side. Beyond this layer, the flame is chemically inert due to radical consumption
by the fuel. Thus, in the rich part of a diffusion flame, there is an upstream preheat zone
of premixed fuel and a downstream diffusion zone.
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Figure 5.41 Counterflow diffusion flame.

5.4.3. Activation-Energy Asymptotics. We now consider the one-step irreversible re-
action with non-unity Lewis number,

ν′FF + ν′OO→ ν′′PP. (5.43)

We now consider the specific configuration of a counterflow flame, with strain rate a =
2uO/L. For the simplified case of constant density (isothermal flow), we then have a self-
similar solution such that,

ur =
ar

2
, uy = −ay, (5.44)

from the mass conservation equation in axisymmetric coordinates ∂yuy + (1/r)∂r(urr) = 0.
In this case, we can write the steady state version of the conservation equations in

Sec. 2.6.4 as:

∇ · (ρu) = 0 (5.45a)

ρu · ∇YF = ∇ · (ραF∇YF) +WFνFw (5.45b)

ρu · ∇YO = ∇ · (ραO∇YO) +WOνOw (5.45c)

ρu · ∇YP = ∇ · (ραP∇YP) +WPνPw (5.45d)

ρcpu · ∇T = ∇ · (λ∇T ) +Qω̇; Q = −
Ns∑
i=1

ρiWiνi, (5.45e)
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with ν = ν′′ − ν′ and the adiabatic flame temperature Tb,

Tb = T0 −
Q(YF,u − YF,b)

νFWFcp
. (5.46)

Moving forward, we introduce the following assumptions:

(1) Constant transport properties
(2) Constant density in the thermo-diffusive limit
(3) Equal molecular weight (WF = WO = WP = W )
(4) We consider the reaction ν′F = 1, ν′O = ν, ν′P = ν + 1 for simplicity

The conservation equations can then be simplified to,

∇ · u = 0 (5.47)

ρu∇YF = ραF∇2YF −Ww (5.48)

ρu∇YO = ραO∇2YO −Wνw (5.49)

ρu∇T = ραT∇2T +
Q

cp
w (5.410)

This leads to the 1-D conservation equations,

ρuy
dYF

dy
= ραF

d2YF

dy2
−W

( ρ
W

)2

AYFYO exp

{
−Ta
T

}
(5.411)

ρuy
dYO

dy
= ραO

d2YO

dy2
−W

( ρ
W

)2

AYFYOν exp

{
−Ta
T

}
(5.412)

ρuy
dT

dy
= ραT

d2T

dy2
− Q

cp

( ρ
W

)2

AYFYO exp

{
−Ta
T

}
. (5.413)

Before we analyze the diffusion flame structure, we will first derive an expression for
the mixture fraction. For this, we consider a one-dimensional problem and introduce the
following normalized variables:

ŷ =
y√
αT /a

; (rescale axial distance with shear layer thickness) (5.414)

ŶF = YF, ŶO = YO (5.415)

Θ̂ = (T − Tu,st)
Wcp(ν + 1)

Q
(5.416)

uy = −ay; ur =
ar

2

∣∣∣∣
r=0

; ûy =
uy√
αT

. (5.417)
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This leads to the non-dimensional equations,

−ŷ dŶF

dŷ
= LeF

dŶF

dŷ2
−DaŶFŶO exp

{
−Ta
T

}
(5.418)

−ŷ dŶO

dŷ
= LeO

dŶO

dŷ2
−DaŶFŶOν exp

{
−Ta
T

}
(5.419)

−ŷ dΘ̂

dŷ
=
dΘ̂

dŷ2
+DaŶFŶO(ν + 1) exp

{
−Ta
T

}
, (5.420)

with Da = A
a (ρ/W ) and a the strain rate. For equal (and unity) Lewis number, we can

define a set of conservation equations for the mixture fraction defined in Eq. (2.34),

ŷ
dZ

dŷ
+
d2Z

dŷ2
= 0, (5.421)

where Z = 0 in the oxidizer stream as ŷ → ∞ and Z = 1 in the fuel stream as ŷ → −∞.
The solution to Eq. (5.421) is given as the following,

Z =
1

2
erfc

(
ŷ√
2

)
=

1

2
erfc

(√
a

2αT
y

)
, (5.422)

where the second expressioin is in dimensional form. With the definition of mixture fraction,
we can introduce the scalar dissipation rate:

χZ = 2αZ |∇Z|2; , (5.423)

where αZ is the diffusivity of the mixture fraction. For the 1D case, this becomes,

χZ = 2αZ

(
dZ

dy

)2

. (5.424)

In the self-similar coordinates defined in Eq. (5.414) , we can use the definition of the
complimentary error function to obtain,

χ̂Z = 2a

(
dZ

dŷ

)2

(5.425a)

= 2a

[
− 2√

π

1√
2

exp

{
−1

2
ŷ2

}]2

(5.425b)

= 2
2a

π
exp

{
−ŷ2

}
, (5.425c)
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where we set αZ = αT . For further analysis, it becomes important to recognize that we
can rewrite the spatial derivative operators as:

∂

∂ŷ
=

∂

∂Z

∂Z

∂ŷ
;

∂2

∂y2
=

(
∂Z

∂ŷ

)2
∂2

∂Z2
=
χZ
2a

∂2

∂Z2
. (5.426)

Thus, for the 1-D advection-diffusion operator, we have:

ŷ
d

dŷ
+

d2

dŷ2
=

(
�
��

��
�

ŷ
dZ

dŷ
+
d2Z

dŷ2

)
d

dZ
+
dZ

dŷ

(
d2

dZdŷ

)
(5.427)

=

(
dZ

dŷ

)2
d2

dZ2
, (5.428)

where the cancellation in the first term occurs due to mixture fraction conservation.
To develop the analysis further, we consider unity Lewis number (Lei = Le = 1), and

rewrite the governing equations,

−ŷ dŶF

dŷ
=
d2ŶF

dŷ2
−DaŶFŶO exp

{
−Ta
T

}
(5.429)

−ŷ dŶO

dŷ
=
d2ŶO

dŷ2
−DaŶFŶOν exp

{
−Ta
T

}
(5.430)

−ŷ dŶP

dŷ
=
d2ŶP

dŷ2
+DaŶFŶO(ν + 1) exp

{
−Ta
T

}
(5.431)

−ŷ dΘ̂

dŷ
=
d2Θ̂

dŷ2
+DaŶFŶO(ν + 1) exp

{
−Ta
T

}
. (5.432)

Where boundary conditions are,

ŷ →∞ (Oxidizer) : ŶO = 1; ŶF = 0; Θ̂ = 0; ŶP = 0 (5.433)

ŷ → −∞ (Fuel) : ŶO = 0; ŶF = 1; Θ̂ = 0; ŶP = 0. (5.434)

Now, we can make several useful observations:

(1) By introducing the mixture fraction definition of Eq. (2.33), we have

Z =
(νŶF − ŶO) + YO,O

νŶF,F + ŶO,O
=
νŶF − ŶO + 1

ν + 1

∣∣∣∣
Zst

=
1

ν + 1
(5.435)

(2) Next, from the equivalence of Eq. (5.431) and Eq. (5.432),

ŶP = Θ̂;

Ns∑
i=1

Ŷi = 1 (5.436)
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(3) Simpifying the transformation of Eq. (5.426) gives,

d

dŷ
=
dZ

dŷ

d

dZ
; ŷ

d

dŷ
− d2

dŷ2
= χ

d

dZ2
(5.437)

Using these results, we can rewrite our problem statement as,

ŶO = (1− Zst)(1− Θ̂) + Zst − Z; YF = 1−Θ− YO (5.438)

ŶF = Z −ΘZst (5.439)

−χ̂ dΘ̂

dZ2
= Da(ν + 1)ŶFŶO exp {−Ze} exp

{
− ZeCe(1− Θ̂)

1− Ce(1− Θ̂)

}
, (5.440)

Z ∈ [0, 1]; ZeCe =
Ta
Tb,st

Tb,st − Tu,st
Tb,st

=
Ta
Tb,st

Ce = ZeCe (5.441)

Z =
1

2
erfc

(
ŷ√
2

)
; Θ̂ =

T − Tu,st
Tb,st − Tu,st

; Tb,st − Tu,st =
Q

Wcp
(ν + 1)

(5.442)

We can now identify three trivial flow regimes:

(1) Frozen Flow: β(1− Θ̂)� 1
Eq. (5.440) reduces to,

d2Θ

dZ2
= 0→ Θ̂ = f(Z) (5.443)

(2) Equilibrium Flow with Zero Oxidizer:

ŶO = 0→ Θ̂ =
1− Z

1− Zst
for Z ≤ Zst (5.444)

(3) Equilibrium Flow with Zero Fuel:

ŶF = 0→ Θ̂ =
Z

Zst
for Z ≤ Zst (5.445)

Liñán further identified four distinguished burning regimes [40] :

(1) Ignition Regime:
Ignition occurs by an increase in Damköhler number, sufficient to cause tempera-
ture variations of O(1/ZeCe) such that (1−Θ) ∼ 1/ZeCe.

(2) Partial Burning Regime:
This is an unstable combustion regime where O(1) leakage of fuel and oxidizer
through the flame results in instability. See Fig. 5.43a.
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Figure 5.42 Equilibrium flow with zero fuel.

(a) Partial burning regime. (b) Partial burning regime.

(3) Premixed Flame Regime:
This condition occurs at or near extinction, where the leakage of one reactant
through the flame results in a structure resembling that of a premixed flame. See
Fig. 5.43b.

(4) Diffusion Flame Regime:
In this region, no reactant leakage occurs to first order, resulting in a flame that
resembles the case of the fast chemistry/Burke-Schumann limit.

With this characterization we can generate an “S-shape” solution curve. Note that the
Damköhler number in this case can be defined as,

Da =
Diffusion Time Through Flame

Chemical Time
=

A

χZ
. (5.446)
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Unstable Premixed
Flame Regime

Extinction
  Regime

  Ignition
  Regime

Equlibrium 

(Burke-Schumann Limit)

Diffusion Flame Regime

Figure 5.44 Damkohler stability plot.

Discussion Box 11: Progress in Knowledge of Flamelet Structure
The “flamelet regime” of combustion has received increasing attention in recent decades due to
its relevance to both laminar and turbulent combustion. Importantly, the flamelet regime is a
limiting regime of turbulent combustion, as at both high Damköhler numbers both premixed
and nonpremixed turbulent flames enter the flamelet regime. As a result, understanding flamelet
structure and extinction is of great importance to turbulent combustion. Asymptotic analysis has
again proven to be a useful tool in these investigations, as the combination of rate-ratio asymp-
totics and reduced reaction mechanisms in particular has revealed key scale separations defining
internal flamelet structure in both premixed and diffusion flames. Other key considerations have
included the effect of the strain rate, curvature, and radiative heat loss on flamelet extinction.
Fundamental understanding of this regime has been an important contribution to general turbu-
lent combustion modeling, aas flamelet models for turbulent combustion have increased in both
popularity and applicability in the last several decades. The reader is referred to the excellent
review of Williams for further detail [65]. An excellent reference on diffusion flamelets can be
found at the following link.

http://www.lth.se/fileadmin/fm/Education/Courses/Combustion/Lect8_TPF.pdf
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Discussion Box 12: Lifted Flames In addition to common burner-stabilized and counterflow
flames, lifted turbulent flame modes are of practical and theoretical interest. The work of [42]
contains an excellent review of stabilization mechanisms in lifted turbulent flames, a regime which
is often found in such systems as commercial boilers and direct-injection gasoline engines. Lifted
flames are of particular interest because, while relatively simple, their stability is governed by a
multitude of complex effects resultant from finite-rate chemistry, turbulence-chemistry interac-
tion, the dynamics of heat release, local extinction, and a variety of other considerations. Even
internally, the fact that “holes” can appear within turbulent diffusion flames involves the study
of “edge flames,” an entirely separate class of flames reviewed by [8].
Fundamentally, there exist many hypotheses about the fundamental reason for lifted flame sta-
bilization. These include the following:

(1) Premixed Flame Theory: The lifted flame base is premixed and is stabilized because
it burns at the local burning velocity

(2) Critical Scalar Dissipation Concept: Flame stabilization is controlled by the extinction
of diffusion flamelets, and thus the lifted turbulent flame stabilizes where the appro-
priate scalar dissipation rate falls below a critical value

(3) Turbulent Intensity Theory: Enhanced turbulent burning velocity impacts propagation
of the reaction zone

(4) Large Eddy Concept: flame leading-edge is attached to large eddies and can migrate
upstream to a neighboring structure in way that routinely stabilizes the flame on a
local scale

(5) Edge-Flame Concept: Theory assumes that the flame leading edge is partially pre-
mixed, and thus that it can propagate upstream counter to the local flowfield.

Results to date generally seem to indicate that the partial premixing and edge-flame theories
hold the most potential, with debate continuing on the effect of large-scale structures.



88 5. FUNDAMENTALS OF COMBUSTION MODELING

Discussion Box 13: Asymptotic Analysis of Flame Structure
The asymptotic structure of premixed flames has been a subject of study for some time. The
analysis presented here for the burning rate eigenvalue problem, for instance, follows that of
von Karman [63] from the late 1950’s. Similarly, the work of [21] concisely demonstrates the
use of matched asymptotics to characterize the structure of premixed flames. These types of
fundamental theoretical analyses form the basis of many key results in combustion science.
In later years, asymptotic analysis would also become a powerful tool in understanding the
behavior of real combustion systems. The work of [40] uses large activation energy asymptotics
and a one-step chemistry assumption on an opposed jet configuration to segment an S curve
in Da − T space into frozen ignition, partial burning, premixed flame, and diffusion controlled
regimes. Importantly, analytic expressions are able to be obtained for ignition and extinction
conditions. Nearly 15 years later, [59] demonstrated that it is not possible to fully describe
diffusion flame structure using one-step chemistry, as the difference in reaction speed on the
rich side (slow) and lean side (fast) yields a critical time-scale separation that is integral to the
accurate description of the asymptotic structure of diffusion flames. It was this work that led to
the distinguished limit ordering ε > ν > δ of the oxidation layer, water-gas shift layer, and fuel
consumption layer.
Such analysis continues to have direct application to combustion systems today. The work of
[13] applies large activation energy asymptotic principles to demonstrate that cellular diffusion
flames form under near-extinction conditions when the Lewis number sinks below a critical value.
Prediction of instabilities in diffusion flames can be more difficult than that in premixed flames
due to the existence of two effective Lewis numbers (fuel and oxidizer) and the fact that flame
structure qualitatively varies with the Damköhler number. In this work, the spatial scales of the
cells in such a flame are predicted to be of the same order as the diffusion length scale, and a
stability regime is predicted as a function of both initial mixture strength and Damk ohler number.
Agreement with experiments nicely demonstrates the applicability of fundamental asymptotic
analysis in understanding the behavior of diffusion flames. An excellent resource on asymptotic
analysis can be found at the following link.

https://www.princeton.edu/cefrc/Files/2011%20Lecture%20Notes/Matalon/Lecture-12.pdf


CHAPTER 6

Turbulent Combustion Modeling

in this chapter, we will provide a qualitative description of the physics of turbulent com-
bustion. For this, we will consider three important phenomena: stabilization mechanisms
of lifted turbulent flames, flame autoignition, and triple flames.

6.1. Ignition of Turbulent Combustion

Ignition is defined as the transition from an unreacted state to a fully or vigorous burn-
ing state. There are two key types of ignition: spontaneous/self-ignition (also known as
autoignition) and forced/assisted ignition (such as spark ignition). Ignition in a homoge-
neous flow is a classical combustion problem that involves understanding the effects of the
flow field and turbulent scale interaction on ignition. From prior analysis, we expect that
both mixing and strain/dissipation will require consideration. Examples of transient igni-
tion processes include spark ignition, re-lighting, and accidental fires. The key governing
equation is the energy equation of Sec. 2.6.4, which we rewrite in convenient form below,

cpρDtT = ∂tp+∇ · (λ∇T ) + q̇HR + q̇EX − q̇RAD, (6.11)

where q̇HR is heat release, q̇EX is the externally supplied energy, and q̇RAD is heat loss (e.g.
by radiation). The ignition criterion for a homogeneous mixture becomes,

∂tT =
1

cpρ

[
1

r
∂r(rλ∂rT ) + q̇HR − q̇Rad

]
(6.12)

q̇HR = Q̇; ∂T ∼
Tb − T∞

R
(6.13)

dtT ∼
V

cpm

[
−λ 1

R2
(2T∞ − Tb) + Q̇

]
. (6.14)

6.1.1. Ignition Classification. There exist several classes of ignition methods that one
should consider, namely,

(1) Jet-Flame Configuration
(2) Mixing Layer
(3) Opposed Jet-Flame

89
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(4) Volumetric Compression

Of relevance to autoignition is the primary mixture composition:

• Stoichiometric, Zst

• Most reactive, ZMR

• Lean mixture, ZLean
• Rich mixture, ZRich

where,

ZLean < ZMR < Zst < ZRich (6.15)

For cold reactants, autoignition occurs at ZMR and at regions of low scalar dissipation rate.
Ignition at the most-reactive mixture conditions has a number of distinct characteristics.

Figure 6.11 Ignition delay time vs. mixture fraction.

The appearance of the ignition site, for instance, is independent of the turbulence time scale.
The ignition time tends to decrease with partial premixing, and is shorter in turbulent than
in laminar flows. Finally, the most-reactive mixture depends on both the fuel and oxidizer
temperature as well as the activation energy of the reaction. The most-reactive mixture
is characterized by a competition between the high temperature of the oxidizer and the
reduced fuel concentration due to the exponential dependence of the reaction rate on the
temperature.

6.1.2. Assisted Ignition. The ignition process in many burners occurs through assisted
ignition, and stability is often achieved via strong swirl or recirculation. There are several
distinct ignition phases that can be considered (see Fig. 6.12):
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(1) Kernel Generation of a small flame occurs around a spark due to thermal energy
deposition and radical formation

(2) Flame expansion occurs due to local propagation of the flame front and turbu-
lent dispersion of the ignited fluid

(3) Flame stabilization refers to the long-term stabilization of a flame in which the
combustion reaction is at steady state

F

O

Figure 6.12 Ignition process figure.

Figure 6.13 Flammability limit figure.
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The flammability factor F characterizes the propensity of a mixture to ignite,

F =

∫ ZRich

ZLean

P (Z)dZ. (6.16)

It is at this point useful to directly derive an expression for the most reactive mixture. For
simplicity, we consider the case of equal moleculuar weights such that,

F + O→ P (6.17)

and the reaction rate can be written in simple Arrhenius form,

w = A exp

{
−EART

}
[F][O], (6.18)

with,

YF = YF,FZ (6.19)

YO = YO,O(1− Z) (6.110)

T = TF + (TO − TF )Z (6.111)

[Xi] =
Y ρ

W
. (6.112)

Thus, we can rewrite the reaction rate as,

w = A
ρ2

W 2
exp

{
−EART

}
YFYO (6.113a)

=
p2

R2
A

1

T 2
exp

{
−EART

}
YFYO (6.113b)

=
p2A

R2

1

[TF + (TO − TF )Z]2

exp

{
− EA
R[TF + (TO − TF )Z]

}
YF,FYO,O(1− Z) (6.113c)

=
p2A

R2
YF,FYO,O

Z(1− Z)

[TF + (TO − TF )Z]2

exp

{
− EA
R[TF + (TO − TF )Z]

}
. (6.113d)
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Now, letting TA = EA/R, β = TA/TF , and ζT = TO/TF , we can rewrite this as:

w =

(
p2

RTF

)2

AYF,2YO,1 exp

{
− β

R[1 + (ζT − 1)Z]

}
Z(1− Z)

[1 + (ζT − 1)Z]2
(6.114)

= Da exp

{
− β

R[1 + (ζT − 1)Z]

}
Z(1− Z)

[1 + (ζT − 1)Z]2
. (6.115)

The most reactive mixture is defined as the limiting value of the mixture fraction as
∂w/∂Z → 0, which reduces to the following expression,

ZMR =
1

2

TA(ζT − 1)− 2±
√
T 2
a (ζT − 1)2 + 4α2

T

TA(ζT − 1) + (ζ2
T − 1)

. (6.116)

Discussion Box 14: Ignition in Turbulent Combustion

The work of [44] provides an excellent overview of applications, analysis, and current research on
turbulent ignition. We provide a brief glimpse into the subject here, but refer the reader to [44]
for a more detailed discussion.
Key applications of forced (or assisted) ignition include jet engine relight and spark-ignition
engine, while designed autoignition occurs in diesel engined and scramjets. Ignition in turbulent
flows is complicated by the stochastic nature of the underlying mixture fraction fields – while a
spark may occur in a flow with a mean composition that will ignite, the spark could be supplied
at a time and location wherein the local mixture is outside of the flammability limits. Note
that even in premixed flows where composition is relatively consistent, fluctuations in the local
strain rate can still make ignition a stochastic phenomenon. In terms of simulating these effects,
autoignition tends to be particularly unforgiving from a numerical standpoint, often requiring
detailed chemistry and careful specification of numerical parameters. Further, autoignition is
not uniform – rather, areas with low local scalar dissipation rates tend to ignite first, a reality
which has been consistently observed in DNS. A variety of turbulent combustion models have
been applied to the autoignition problem, with transported PDF and flamelet methods showing
particular applicability. Understanding these phenomena in turbulent sprays remains an open
research question on which there exists relatively little present literature.

6.2. Governing Equations and Low-Mach Formulation

In this section, we focus on turbulent combustion modeling. The starting point is the
combustion equations that we derived in Sec. 2.6.4. We now consider low-mach formulation
of the governing equations describing conservation of mass, momentum, species, and energy
first introduced in Sec. 2.5 with the following assumptions,

• Fourier’s Law: q = λ∇T
• Fick’s Law for Diffusion: j = −ρα∇Y
• Neglect buoyancy
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For this, we decompose the pressure into a thermodynamic and a hydrodynamic com-
ponent.

p(x, t,M) = p0(t) +M2p2(x, t) +O(M3) (6.21)

, where p0 is the thermodynamic pressure and p2 is the hydrodynamic pressure. After
inserting this definition into the governing equations and retaining leading order terms in
M , we can decouple the momentum conservation from the other equations:

Mass: ∂tρ+∇ · (ρu) = 0 (6.22a)

Momentum: ∂t(ρu) +∇ · (ρu⊗ u) = −∇p2 +∇ · σ (6.22b)

Species: ∂t(ρY ) +∇ · (ρuY ) = ∇ · j + ρω̇ (6.22c)

Total Enthalpy: ∂t(ρht) +∇ · (ρuht) = ∇ · q (6.22d)

EOS: p0 = ρRT (6.22e)

where all quantities without a subscript are of zeroth order in the Mach number. As a
reminder, the main benefit of this low-Mach formulation is that it enables a decoupling of
the momentum conservation equation, which is now only dependent on the hydrodynamic
pressure. By decomposing the pressure, sound waves are filtered out, and pressure and
density become decoupled in the following manner:

ρ(s, Y , p0 + p′) ≈ ρ(s, Y , p0) + p′

�
��

�
��
�*0(

∂ρ

∂p

) ∣∣∣∣
S,Y ,V

, (6.23)

and reconizing that the speed of sound is given as,

a =

(
∂p

∂ρ

) ∣∣∣∣
S

, (6.24)

it immediately folllows that a → ∞, meaning that the solution will propagate at infinite
speed through the medium.

6.3. Favre-Averaging

Applying the Favre-averaging/filtering method described in 4.3.2.2 to the foverning

equations with φ = φ̃+ φ′′ and φ̃ the filtered quantity allows us to obtain the following set
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of equations,

Mass: ∂tρ+∇ · (ρũ) = 0 (6.31)

Momentum: ∂t(ρũ) +∇ · (ρũ⊗ ũ) = −∇p+∇ · σ +∇ · σt (6.32)

Species: ∂t(ρỸ ) +∇ · (ρu⊗ Ỹ ) = ∇ · j +∇ · jt + ω̇ (6.33)

Total Enthalpy: ∂t(ρh̃t) +∇ · (ρũh̃t) = ∇ · q +∇ · qt, (6.34)

Note that in this case, we do not distinguish between averaging in the RANS-sense (spa-
tial/temporal ensemble) or filtering in the LES sense. Importantly, unclosed terms appear
in the Favre-averaged equations. These include:

• Turbulent Stresses:

σtij = ρũiũj − ρũiuj = −ρũ′′i u′′j (6.35)

= ρũiũj − ρ[ ˜(ũi + u′′i ) · (ũj + u′′j )] (6.36)

= ρũiũj − ρ[ ˜̃uiũj + ˜̃uiu′′j + ũ′′i ũj + ũ′′i u
′′
j ] (6.37)

where the last two lines contain the expression known as the Leonard Triple De-
composition of the turbulent stresses

• Turbulent Scalar Transport:

jtα,i = ρũiỸα − ρũiYα=̃ρũ′′i Y
′′
α (6.38)

• Turbulent Enthalpy Flux:

qti = ρũih̃t = ρũiht = ρũ′′i h
′′
t (6.39)

• Chemical Source Term:

ωα =
∑
k

Wαναkf,k

[∏
α

[Yα]ν
′
α,k − 1

K

∏
α

[Yα]ν
′′
α,k

]
(6.310)

In the following, we pursue a segregated approach and employ different models for each
term.

6.4. Closure Models for Turbulent Fluxes and Reynolds Stresses

6.4.1. Turbulent Stresses. A common closure for modeling turbulent stresses is the equi-
librium closure approach using the Boussinesq approximation. This relates the turbulent
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stresses to the shear rate via a turbulent viscosity µt,

ρu′′i u
′′
j = ρũ′′i u

′′
j = −µt

µ
σ̃ij +

2

3
ρkδij ; k =

1

2
ũ′′2i , (6.41)

σ̃ij = µ

[
∂iũj + ∂j ũi −

2

3
∂kũkδij

]
. (6.42)

Within this modeling framework, there exist several closure models for the turbulent
viscosity, µt. A common closure is the RANS k − ε model, which expresses µt as

µt = Cµρ
k2

ε
(6.43)

with transport equations for k and ε and the model parameter Cµ often set equal to a value
of Cµ = 0.09 to obtain agreement with experimental configurations for isothermal flows.

Another class of closures is based on LES filtering. Specifically, we can write µt as,

µt = Csρ∆2|S̃ij |, (6.44)

=

√
2S̃ijS̃ij (6.45)

where ∆ is the LES filter width and Sij = (∂iũj + ∂j ũi)/2. The constant Cs is referred to
as the Smagorinski constant, and generally ranges between values of 0.1 and 0.25. There
exists a more sophisticated version of this model, wherein the value of Cs can be dynamically
adjusted, due to Germano [25]. Additional models for the turbulent viscosity include non-
equilibrium models, fractal methods, and Lagrangian models. It is also important to model
the turbulent scalar fluxes of Eq. (6.38) and Eq. (6.39). The most common model for these
quantities is based on the eddy-diffusivity concept, relating turbulent scalar fluxes to a
resolved (or mean) scalar gradient such that,

ρu′′i ψ
′′ = ρũ′′i ψ

′′ = −ραt
∂ψ̃

∂xi
(6.46)

where αt is the turbulent diffusivity, evaluated as,

αt = Cψ∆2|S̃ij | (6.47)

By introducing the turbulent Schmidt number,

Sct =
νt
αt
∼ [0.4, 0.7] (6.48)

and comparing Eq. (6.45) to Eq. (6.47), it follows that,

Cψ =
Cs
Sct

(6.49)

which is common in the context of LES applications.
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6.4.2. Chemical Source Term Modeling. A main focus of turbulent combustion mod-
eling is concerned with the closure of the chemical source term:

ω̇α = ω̇α(Y , T, ρ, ...) (6.410)

From previous flame structure analysis and the Arrhenius form, we know that this term is
localized and non-linear, so that a simple approximation of the form,

ω̃α ' ω̇α(Ỹ , T̃ , ρ̃) (6.411)

is inaccurate!
In the following, we will consider a subset of turbulent combustion models that have

different fidelity and applicability. In general, we can evaluate turbulent combustion models
based on the following properties:

(1) Accuracy
(2) Generality and Model Applicability
(3) Computational Complexity

We will now introduce a general classification to categorized different combustion mod-
els. For this, we introduce the notion of topology to distinguish between topology-free and
topology-based combustion models.
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Topology-Free Models

• Closure models make no assumptions
about flame strructure, or exploit

flame topology

• Combustion model typically requires
solution for all or a subset of species

(for reduced chemistry)
• Models use different submodels to de-

scribe mixing and reaction chemistry

Examples

• Direct source-term evaluation (“lam-

inar chemistry model”)

• Eddy-dissipation model/eddy-
breakup model

• Transported PDF model
• Deconvolution methods

Advantages

• Applicable to wider range of combus-
tion problems

• More general formulation

• Provides representation of different
combustion-physical processes: de-

tailed chemistry, complex transport,

multistream systems, boundary con-
ditions, heat-transfer, radiation

Disadvantages

• Computationally complex (often due

to higher dimensional formulation)

• Segregation of different physical pro-
cesses (mixing and reaction)

• Statistical convergence (particle

method)
• Numerical algorithms

Topology-Based Models

• Closure for chemical source term ex-
ploits structure/topology of flame,–

typically assume presence of a lam-

inar flame element or flamelet
• Flame structure described from

asymptotic canonical and laminar

flame solutions of premixed and
diffusion flames

• Flame structure projected onto a re-
duced scalar manifold (Z,C, χ)to de-

scribe chemistry more compactly

Examples

• steady flamelet model

• flamelet/progress-variable (FPV)

• Flame prolongation of ILDM (intrin-
sic low dimensional manifold) (FPI)

• Flamelet-generated manifold (FGM)
• Conditional moment closure

• Linear eddy model/1D turbulence

Advantages

• Reduced computational complexity

• Presumed PDF-closure for

turbulence-chemistry interaction
• Account for finite-rate chemistry

• Flexibility to incorporate radiation,

pollutant formation, unsteady pro-
cesses, multistream combustion

• Chemistry described via tabulatino

Disadvantages

• Reduced manifold representations
eliminate slow-time-scale processes

• Models are specific to certain com-
bustion regimes; other combustion
regimes (partially premixed) are only
approximately represented

• Dependence on tabulation introduces
memory limitations and restrictions
on model complexity
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Premixed Non-Premixed
    Diffusion

Partially 
Premixed

Eddy Dissipation Model (EDM)

Reaction ProgressVariable
Level Set
Bray-Moss-Libby
(BML) Model

Mixture 
Fraction

Reacton Progress
Variable + 
Mixture Fraction

Laminar finite-rate model (zeroth order source term evaluation)
Transported PDF Model
Eddy Dissipation Model
Linear Eddy Model (LEM)

Flame Surface Density
Flamelet  Formulation 
(FGM, Level Set)
Thickened Flamelet Model

Flamelet Progress Variable
Flame Prolongation in ILDM
Conditional Moment Closure

    Fast
Chemistry

Finite-
Rate

Chemistry

Figure 6.41 Classification of combustion models and applications.

6.5. Regime-Independent Models

In the following we will consider different turbulent combustion models. For illustrative
purposes, we will consider a simple one-step reaction chemistry of the form,

F + O
k→ P. (6.51)

6.5.1. Laminar Finite Rate Chemistry. We will first consider the transport equations,

ρDtỸα = ∇ · (ρα∇Ỹα) +∇ · jt
α

+ ω̇(Y , T, ρ) (6.52)

The simplest closure model for the chemical source term is then to expand the source term
to zeroth order in Y and T ,

ω(Y , T ) ' ω(Ỹ , T̃ , ρ) (6.53)
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or,

ω̇0(Ỹ , T̃ ) ' ỸFỸO exp

{
−Ta
T̃

}
(6.54)

The fact that this model is not accurate can be seen by expanding to second order:

ω̇(Y , T ) = ỸFỸO exp

{
−TA
T̃

}
+ exp

{
−TA
T̃

}[
Y ′′F ỸO + ỸFY

′′
O + ỸFỸO

TAT
′′

T̃ 2

]
(6.55)

6.5.2. Eddy Breakup and Eddy-Dissipation Model. The Eddy Breakup Model (EBU)
and Eddy Dissipation Model (EDM) assume that combustion is mixing-controlled, so that
finite-rate chemistry effects are neglected. This is computationally inexpensive and useful
for mixing-limited combustion, but limited to one- or two-step chemistry. The EBU has
been formulated for premixed flames and replaces the chemical timescale by the turbulent
mixing timescale τu = k/ε,

EBU: ω̇ = ρCEBU
1

τu

√
Y ′′2P (6.56)

EDM: For DtỸα = ∇ · (ρα∇Ỹα) +∇ · j
α

+Wαναw (6.57)

and ν′FF + ν′OO→ νPP (6.58)

w = ρ
1

τu
min

(
A

ỸF

ν′FWF
, A

ỸO

ν′OWO
, AB

ỸP

ν′′PWP

)
(6.59)

where A ≈ 4.0 is an empirical constant. In this case, the chemical reaction is controlled
by the large-eddy mixing time τu defined in 4.31. The combustion can proceed as soon
as turbulence is present, and no ignition source is required to be present. This model
is acceptable for premixed flames, but does suffer from issues in predicting ignition and
combustion upstream of the flame.

6.5.3. Transported PDF Methods. PDF methods employ a statistical approach for
representing turbulent reacting flows. Starting from the work of [52] in the 1980’s, these
methods have performed reasonably well in describing stochastic aspects of turbulent com-
bustion such as intermittent extinction and re-ignition [53]. An excellent review of the
subject can be found in [27]. Instead of solving transport equations for the scalar flow
variable, the transport equation for the PDF is solved. The PDF itself is a one-point sta-
tistical representation of turbulent reacting quantities, and does not contain information
about two/multi-point quantities. In general, we can distinguish between:

(1) Scalar transported PDF-method: solves a transport equation for the joint scalar-
energy PDF P (Y, T ;x, t), where Y, T are sample-space variables

(2) Joint velocity-scalar PDF-method: solves a transport equation for velocity-scalar
energy quantities P (U ,Y, T ;x, t).
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Advantages of PDF methods include:

• Statistical representation of the PDF contains information about all moments of
the joint (velocity)-scalar field: 〈uni Y mα T p〉(n,m, p) ∈ Z. Note that this informa-
tion is often more than one needs for engineering representations

• Since the chemical source term is a point-wise quantity, this term is exact and
does not require modeling.

• The PDF method does not invoke any assumptions about the flame topology, and
is therefore (in theory) a regime-independent method apart from the mixing model

Disadvantages include:

• The resulting transport equation for the joint PDF evolves in state-space and
physical space and is therefore higher dimensional:

P (U, Y ;x, t) ∈ R(ND+NS)×(ND+1) (6.510)

where: U ∈ RND ;Y ∈ RNS ;x ∈ RND , t ∈ R (6.511)

• Scalar mixing and turbulent transport are governed by multi-dimensional and two-
point interactions. These processes are therefore not fully represented and require
modeling. Example: ε = ∂iuj∂jui

We will now derive the transport equation for the joint velocity-scalar PDF. We can formally
write the PDF as

Pφ(ψ;x, t), (6.512)

where φ(U, Y , T )T represents a composition or field variable and ψ(U ,Y, T ) represents a
sample space variable. We also recall the definition of the mean quantity or expectation as,

φ =

∫ ∞
−∞

ψPφ(ψ;x, t)dψ (6.513a)

Q = Q(x, t) =

∫∫ ∞
−∞

Q(ψ)Pφ(ψ;x, t)dψ. (6.513b)

Note that the Favre-PDF P̃ and the conventional PDF P can be related via the mass
density function,

PU,Y (U ,Y;x, t) = ρP̃U,Y (U, Y ;x, t) = ρPU,Y (U, Y ;x, t). (6.514)

A convenient way for deriving the transported PDF method is by introducing the fine-
grained PDF:

P̃u,Y (u,Y;x, t) = δ(U(x, t)− U)δ(Y (x, t)− Y). (6.515)

corresponding to a delta function as representations of the PDF for a single flow-field
representation. Details of the derivation of the transported PDF equation can be found
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in the work of Pope (see Appendix H) [54]. Here, we sketch the derivation and highlight
critical evaluation steps. The starting point are the following governing equations:

Dtρ = −ρ∇ · u (6.516)

Dtu = a, a =
1

ρ
(−∇p+∇ · σ) (6.517)

DtY = b, b =
1

ρ
(−∇ · j + ω) (6.518)

To illustrate the derivation, we consider an isothermal flow (ρ =const), and then extend this
formulation to variable density systems. Thus, in our first analysis we will replace continuity
with ∇ · u = 0. We now consider a scalar, one-point random field variable Q(u, Y ) as a
function of time. First, the substantial derivative becomes,

DtQ = ∂tQ+∇ · uQ (6.519)

= ∂t

∫∫ ∞
−∞

Q(U ,Y)PU,Y (U ,Y;x, t)dUdY +∇ ·
[∫∫ ∞

−∞
UQ(U ,Y)PU,Y (U ,Y;x, t)dUdY

]
(6.520)

=

∫∫ ∞
−∞

Q(U, Y )
[
∂tPU,Y +∇ · UPU,Y

]
dUdY (6.521)

Second, we can expand the mean convection term on the LHS of Eq. (6.519) as,

DtQ(U, Y ) =
∂Q

∂U
·DtU +

∂Q

∂Y
·DtY (6.522)

=
∂Q

∂U
a+

∂Q

∂Y
b, (6.523)

with expected value,

DtQ =
∂Q

∂U
a+

∂Q

∂Y
b. (6.524)

Note that a and b depend on multi-point information of random field variable U and Y,
such as the velocity of scalar gradients. Since these multi-point terms are not contained in
the formulation, they require modeling; therefore, we represent all unclosed terms in the
the vector C. With this, we can write,

PU,Y ,C(U ,Y, C) = PC|U,Y(C|U ,Y)P (U ,Y). (6.525)
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By introducing this step, we can express all right-hand-side terms as,

a = a(U, Y ,C) (6.526a)

b = b(U, Y ,C) (6.526b)

Q = Q(U, Y ), (6.526c)

where C describes the two-point closure terms. This allows us to write,

∂Q

∂U
a =

∫∫∫ ∞
−∞

∂Q

∂U (U ,Y)a(U, Y , C)PU,Y ,C(U ,Y, C)dCdYdU (6.527)

=

∫∫ ∞
−∞

∂Q

∂U (U ,Y)a|U ,YPU,Y (U ,Y)dYdU (6.528)

where a|U, Y =

∫ ∞
−∞

a(U ,Y)PC|U,Y (C|U ,Y)dC. (6.529)

Similarly, we have,

∂Q

∂U
b =

∫∫ ∞
−∞

∂Q

∂U (U ,Y)b|U, Y PU,Y (U ,Y)dYdU (6.530)

By using integration-by-parts, ∫ b

a

f ′gdx = fg

∣∣∣∣b
a

−
∫ b

a

fg′dx, (6.531)

we can rewrite Eq. (6.528) and Eq. (6.530),

∂Q

∂U
a = −

∫∫ ∞
−∞

Q
∂

∂U

[
a|U, Y PU,Y , (U ,Y)

]
dYdU (6.532a)

∂Q

∂U
b = −

∫∫ ∞
−∞

Q
∂

∂Y

[
b|U, Y PU,Y , (U ,Y)

]
dYdU , (6.532b)

where we have used the fact that the boundary integrals at ±∞ are zero due to the com-
pact PDF kernel. Upon combining all terms and equating integrands, we obtain the joint
velocity-composition PDF transport equation for constant-density flows,

∂tPU,Y + U · ∇PU,Y = − ∂

∂U
[
a|U, Y PU,Y

]
− ∂

∂Y
[
b|U, Y PU,Y

]
, (6.533)

where the left-hand terms represent advection in physical space by the unsteady velocity
field, the first term on the right-hand side represents transport in velocity space due to
conditional acceleration a|U ,Y, and the last term represents transport in compositional

space due to conditional reaction/diffusion b|U ,Y.
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We can at this point make several observations. First, the transport equation evolves in
physical-velocity-composition space and cannot be represented by conventional discretiza-
tion schemes. This is a direct result of the curse of dimensionality. Further, all two-point
correlations in a|U ,Y and b|U ,Y are unclosed and require modeling; this includes such
phenomena as molecular diffusion, turbulent mixing, viscous dissipation, and pressure fluc-
tuations. The one-point chemical source term, however, appears in closed form:

a|U ,Y =
1

ρ
(∇ · σ −∇p)|U ,Y (6.534)

b|U ,Y =
1

ρ
(−∇j)|U ,Y +

ω

ρ
(Y). (6.535)

In the following, we will consider the joint compositional PDF. We fill first derive this
quantity before stating the density-weighted/Favre-weighted PDF and discussing the closure
model in the limit of high Reynolds-number flows. Finally, we will discuss solution methods
utilizing particle-based approaches.

The joint composition PDF is obtained by integrating over velocity space, resulting in
a marginal PDF. The transport equation for this PDF can be written as,

∂t(ρP̃Y ) +∇ · (ρũP̃Y ) = −ρ∂ω̇P̃Y
∂Y −∇ · (u′′|YρP̃Y ) +

∂

∂Y

[
1

ρ
∇ · j|YρP̃Y

]
, (6.536)

where the remaining unclosed terms are the scalar-conditional velocity fluctuation (penul-
timate right hand term) and the scalar molecular mixing (last right-hand term).

Modeling of conditional diffusion and molecular transport b|U ,Y is of main concern in
the PDF closure. Although significant progress has been made, its closure is the weakest
link. This term represents transport of the PDF by molecular diffusion. Relevant processes
include both transport in physical space and transport in composition space. Molecular
transport is typically negligible for high Reynolds number flows at Sc ∼ 1 and Pr ∼ 1. By
expanding the diffusion term (for constant density and diffusivity), we can see that only
the conditional diffusion portion of the molecular mixing term requires modeling:

α∇2Y |U ,Y = α∇2Y + α∇2Y ′|U ,Y, (6.537)

where only the last right hand term remains unclosed. Closure models for conditional
diffusion should fulfill the following constraints and requirements:

(1) Scalar mean must remain unchanged
(2) Correct representation of joint scalar dissipation rate
(3) Velocity and scalar gradients must remain uncorrelated
(4) Local scalar isotropy must be correct
(5) PDF of conserved scalar should relax to Gaussian distribution
(6) All scalars must remain bounded
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(7) Mixing should be local in composition space
(8) Mixing rate should depend on scalar length scale
(9) Mixing should depend on Re, Sc, Da, etc.

By considering the unclosed term:

α∇2Y ′|U ,Y (6.538)

describing molecular mixing, we can justify the following requirements for a conserved scalar
representation:

(1) Gaussianity: follows from the law of large numbers
(2) Molecular mixing must leave scalar mean unchanged. Specifically, integrating

molecular mixing over the PDF PU,Y should give∫∫
α∇2Y ′|U ,YPU,Y dUdY = α∇2Y ′2 = 0 (6.539)

for constant α
(3) The representation of the joint scalar dissipation rate can be written as follows,∫∫

Y ′αα∇2Y ′β |U ,YPU,Y dUdYαdYβ = α(Y ′α∇2Y ′β) (6.540)

= α∇ · (Y ′α∇Y ′β)− α∇Y ′α · ∇Y ′β (6.541)

(4) The locality of mixing in composition space should be represented such that molec-
ular diffusion in physical space is local and continuous in both space and time.
For instance, with χα = 2αα(∇Yα)2,

dYα =

√
χα
2αα

dx (6.542)

with χα continuous. We can then expect that dYα remains continuous in compo-
sition space.

6.5.3.1. Interaction by Exchange with the Mean (IEM). We will now give an overview
of some important mixing models. The first of these is known as Interaction by Exchange
with the Mean (IEM). This is one of the simplest models, in which we assume a linear
relaxation of the scalar Yα towards its mean Y α. The model formulation is thus,

α∇2Yα
′|U ,Y − 1

τα
Y − Y), (6.543)

where τα is the mixing time scale, which is here related to the scalar dissipation rate of
species α,

τα =
Y ′2α
χα

χα = 2αα(∇Y ′α)2 (6.544)
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Figure 6.51 Coalesce-Disperse model schematic.

The closure for τα is obtained through scale similarity:

τu =
k

ε
; τα =

Y ′2α
χα

Cα =
τu
τα
, (6.545)

where a value of Cα ≈ 2 is commonly used. This mixing model of Eq. (6.543) fulfills the
following conditions,

• Does not change the mean value
• Correct representation of the joint scalar dissipation
• Independence of the velocity and scalar gradients requires,

αα∇Y ′α|Y =
1

τα
(Yα|U − Yα) (6.546)

• Linearity

The main issues with this model are that the PDF does not relax to a Gaussian distribution
and that the mixing is not local.

6.5.3.2. Coalesce-Disperse Model. A second well-known mixing model is the Coalesce-
Disperse (CD) model due to Curl [17] describes the mixing as a two-step process of a
dispersed two-fluid system as in Fig. 6.51.

In such a model, fluid 1 with (Yα,1, Yβ,1) interacts with fluid 2, characterized by
(Yα,2, Yβ,2). After interaction, the fluids are characterized by (Y ∗α,1, Y

∗
β,1) and (Y ∗α,2, Y

∗
β,2).

This means that in the mixed state,

Y ∗α =
1

2
(Yα,1 + Yα,2) (6.547)

Y ∗β =
1

2
(Yβ,2 + Yβ,2). (6.548)
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Properties of this model include that the mean remains unchanged and that mixing occurs
at a characteristic frequency. Disadvantages include lack of Gaussianity, equal mixing time
for all scalars, and the fact that mixing is not local. This last issue is particularly true for
the limit of Da→∞, in which the flame sheet becomes infinitely small.

6.5.3.3. Numerical Methods. A last aspect of the PDF methods that we will discuss
is the Lagrangian PDF method and the Fokker-Planck equation. The transported PDF
equation was originally derived in Eulerian form, and requires solution in joint space-time-
(velocity)-composition space. This is computationally expensive, and becomes infeasible
for problems involving even a moderate number of chemical species. To overcome this
issue, we can formulate the PDF equation as an equivalent particle method using stochastic
differential equations. The first method for accomplishing this task combines the Langevin
model for the velocity field with the species equations such that,

dx+ = [u+∇αT ]+dt+
√

(2αT )+dW, (6.549)

where u is obtained from RANS/LES and dW is an independent Wiener process with zero
mean and unit variance such that,

dW (t) = W (t+ dt)−W (t) ≡ N (0, dt). (6.550)

The first term on the right-hand side of Eq. (6.549) describes drift while the second term
describes the difference resultant from stochastic evolution of the physical process. The
species evolution is then evaluated as,

dY +

dt
= ω(Y +(t)) + (α∇2Y )+, (6.551)

where the first right hand term is a pointwise exact source term while the second term on
the RHS is an unclosed two-point species diffusion. By modeling the molecular mixing term
using the IEM model of Eq. (6.543) we can obtain the following Lagrangian particle model,

dX+ = [u+∇αT ] dt+
√

2αT dW (6.552)

dφ+ = ω(φ+(t))− 1

τM
(φ+ − φ+) (6.553)

φ = (Y , T ), (6.554)

where τM is the turbulent mixing rate. The second method for approaching this type
of model deals with the case of homogeneous turbulence. In this situation, we can omit
the momentum conservation and only consider a stochastic differential equation for species
conservation

dφ = ωdt− adt+ bdW, (6.555)
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where the term ωdt represents reaction chemistry, the term adt represents drift by molecular
mixing, and the term bdW represents diffusion. In this case, we can write a and b as,

a =
1

τM
(φ− φ) (6.556)

b =
1

τM
(φ′2f(φ)), (6.557)

where f(φ) is introduced to enforce boundedness in composition space.

6.5.4. Linear Eddy Model (LDM). Another class of turbulent combustion model, the
Linear Eddy Model, was developed as a subgrid model for LES and is generally considered
regime-independent. The key idea behind this model is that we can represent the flame
structure as a collection of one-dimensional flame elements. The turbulence-chemistry in-
teraction is represented by a triple-map, which is followed by reaction and diffusion.

LES Mesh

1-D Flame
 Elements

Figure 6.52 Subgrid representation of LDM.

For each 1D flame element, we can solve a 1D reaction-diffusion equation:

ρ
∂Yα
∂t

=
∂

∂ξ
jα + ω̇α (6.558)

ρcp
∂T

∂t
= ρ

Ns∑
α=1

cp,αjα
∂T

∂ξ
+

∂

∂ξ

(
λ
∂

∂ξ
T

)
+ ω̇T , (6.559)

where ξ is a local coordinate. By introducing φ = (Y , T ), turbulence-chemistry interaction
is then represented through a triple-map,

φ(ξ)→ φ(M(ξ)) (6.560)
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where,

M(ξ) =


3ξ 0 ≤ ξ ≤ l/3
2l − 3ξ l/3 ≤ ξ ≤ 2l/3

3ξ − 2l 2l/3 ≤ ξ ≤ l
ξ else

(6.561)

Advection of 1D flame elements is incorporated through splicing to accommodate mass
conservation and element coupling.

6.5.5. One Dimensional Turbulence. This type of modeling represents an extension
of the IEM multiscale approach to couple reaction, diffusion, and turbulent transport.
It combines a coupled deterministic solution for reaction and molecular transport with
a stochastic prescription for turbulent transport. Lagrangian formulations and Eulerian
representations are both solved. More details on this model can be found in [37].
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Discussion Box 15: Turbulent Compositional Fluctuations in RCMs.
The modeling of low-Mach turbulence is important in practical combustion devices, and this is
particularly easy to observe within the context of Rapid Compression Machines (RCMs) [31].
Within an RCM, gas is ignited via rapid piston compression. Such devices are often used to
study aspects of reaction kinetics and form a better understanding of fuel mixtures such as
syngas. While a major goal of RCMs is to provide a homogeneous, repeatable environment in
which to study combustion phenomena, the generation of turbulence within these machines can
cause discrepancies between experimental measurements and the results of simulation or theory.
Several mechanisms by which this can occur are as follows:

(1) Filling process: The filling process of the driven section with the fresh test gas mix-
ture is accompanied by the generation of small-scale turbulence fluctuations that are
approximately homogeneously distributed in the entire test section. If the compression
phase is initiated directly after the filling process, providing insufficient time for the
complete decay, the initially introduced turbulence is amplified during the compression

(2) Corner vortices: During the compression phase, the piston motion generates corner
vortices and large vortical structures. The roll-up of these structures induces flow field
perturbations and the entrainment of cold fluid into the core region. Although these
corner vortices can be reduced by appropriate piston-crown design, their contributions
cannot be entirely eliminated.

(3) Boundary layer-generated turbulence: During the compression phase, the piston motion
induces a mean flow, which leads to the formation of a boundary layer. At sufficiently
high Reynolds numbers, the boundary layer transitions, which is associated with the
generation of turbulence. This wall-generated turbulence is subsequently transported
into the core region, where it will be further amplified through the mean strain inter-
action.

(4) Turbulence production by compressive strain: During the compression phase, the rapid
piston motion induces a time-dependent strain rate, leading to enhanced turbulence
production. This nonequilibrium process is dependent on the strain-rate profile, and
is a main mechanism for the turbulence amplification at the end of the compression
phase.

Amongst the key conclusions from this study were that turbulence-chemistry interaction could
cause stochastic ignition characteristics, and that fluctuations in temperature and composition
are important reasons for systematic errors in RCM measurements, which are critical for under-
standing chemistry.

6.6. Topology-Based Combustion Models

The key idea behind topology based combustion models is that we can utilize informa-
tion about the underlying flame topology to (a) obtain a closure of unclosed/model terms
and (b) reduce the dimensional complexity of the model. Since these models rely on the
underlying flame topology, they tend to be grouped into the asymptotic limits of premixed
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flame models and diffusion flame models. Of course, regime dependence can restrict appli-
cability and accuracy of the combustion model if not applied carefully and appropriately.
Often, these models are referred to as either flamelet models or tabulated chemistry models.
The concept of a flamelet was introduced in Discussion Box 11. A flamelet is a represen-
tation of a flame as an ensemble of laminar diffusion/premixed flames – the fundamental
assumption in this case is that turbulent structures do not penetrate the flame, and thus
only lead to deformation and stretching of the reaction-diffusion region. In analyzing these
types of schemes, we will start by revisiting the flamelet model for diffusion flames.

6.6.1. Flamelet Models. In the derivation of the flamelet equations, the following as-
sumptions are introduced:

(1) Typically derived for low-Mach number flows
(2) Derivation in the limit of large Da flows requires an assumption that chemical time

scales are fast compared to turbulent flow scales, and it is difficult ot incorporate
the effects of slow time scales (NO formation, radiation, soot, etc.)

(3) Flamelet derivation depends on solution of a boundary-value problem with well-
defined conditions in the fuel/oxidizer streams; extensions to multi-stream systems
is therefore difficult

For the formal model derivation of the flamelet equation, we consider the scalar equa-
tion,

ρ∂tφ+ ρu · ∇φ = ρα∇2φ+ ρω̇ (6.61)

ρ∂tZ + ρu · ∇Z = ρα∇2Z, (6.62)

where we have assumed equal diffusivity, Le = 1, and constant transport properties. Now,
consider a surface of stoichiometric mixture, and construct the local coordinate system as
shown in Fig. 6.61 (this is equivalent to a Crocco-transform). Formally, we can evaluate

Figure 6.61 Coordinate system for flamelet equation derivation.



112 6. TURBULENT COMBUSTION MODELING

directions as,

n̂ =
∇Z
|∇Z| ; ŝ =

n̂× ê
|n̂× ê| , t = −n̂× ŝ; dx = n̂

dZ

|∇Z| , (6.63)

so that n̂ is aligned with the mixture-fraction gradient. We now introduce a coordinate
transformation:

(t, x)→ (τ, Z(x, t), Z2, Z3) (6.64)

and transformation rules,

∂

∂t
=
∂τ

∂t

∂

∂τ
+
∂Z

∂t
∂Z (6.65)

∇ = ∇Z ∂

∂Z
+∇⊥; ∇⊥ =

(
0;

∂

∂Z2
;
∂

∂Z3

)T
. (6.66)

Applying the transformation rule to the governing equations gives:

ρ
∂φ

dt
− 1

2
ρχZ

∂2φ

∂Z2
− ρω̇ = −ρu · ∇⊥φ+ ρα∇2

⊥φ+ 2ρα∇Z · ∇⊥φ, (6.67)

where φ = (y,H)T and ω̇ = (ωT , qR)T . An asymptotic analysis with stretched coordinates,

ξ =
1

ε
(Z − Zst) (6.68)

with ε ∼ 1/EA gives the following,

ρ
∂φ

dt
− 1

2
ρχZ

∂2φ

∂Z2
= ρω (6.69)

χZ = χZ,st exp
{

2
(
[erfc−1(2Zst)]

2 − [erfc−1(2Z)]2
)}
. (6.610)

By invoking the steady state assumption, we can precompute all flamelet solutions for
different χst and parameterize all thermochemical quantities in terms of Z and χst,

ψ = Eψ(Z, χst) (6.611)

with: ψ = (ν, α, ω̇, T, Y )T . (6.612)

Closure of the averaged conservation equations for low Mach number flows gives:

∂tρ+∇ · (ρũ) = 0 (6.613)

ρ∂tũ+ ρũ · ∇ũ = −∇p+∇ · σ +∇ · τ∗ (6.614)

σ = µ[∇ũ+ (∇ũ)T ]− 2

3
µ∇ũI. (6.615)
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where τ∗ represents contributions from other sources to the momentum equation. Filtered
quantities and other quantities are then obtained using a presumed PDF closure model:

ψ̃ =

∫∫
Eψ(Z, χZ)P̃ (Z, χZ)dZdχZ , (6.616)

where P̃ (Z, χZ) is the joint PDF of Z and χZ . A common model for P̃ (Z, χZ) is obtained
by writing,

P̃ (Z, χZ) =
ρ

ρ
P (Z, χZ) =

ρ

ρ
P (Z)P (χZ) (6.617)

under the assumption of statistical independence, and we use,

P (Z) = β(Z, Z̃, Z̃ ′′2) (6.618)

by writing χZ = χZ,stf(Z) so that we only need to model P (χst). A common model is to
represent P (χst) with a log-normal distribution (χst ≥ 0),

P (χst) =
1

χstσ
√

2π
exp

{
− (lnχst − µ)2

2σ2

}
(6.619)

with σ ≈ 1 and µ = lnχst. Note that the model requires transport equations for Z̃, Z̃ ′′2

and an algebraic model for χst.
Note that there are several modifications to this formulation. These can include:

• Flamelet/Progress-Variable (FPV) Model
• Flamelet-Generated Manifold (FGM)
• Flame Prolongation of ILDM

In the last two models, the flamelet state space is commonly constructed from premixed
flamelet solutions.

6.6.2. Flamelet Model for Turbulent Diffusion Flames. The formulation and deriva-
tion of the flamelet model for turbulent diffusion flames presented here follows that due to
Peters [48]. The Steady Laminar Flamelet Model (SLFM) describes turbulent flames from
the solution of the steady laminar flamelet equations by including the upper stable branch
and mixing branch of the S-curve.

The Flamelet Progress Variable (FPV) Model represents a parameterization of the
state-space of Eq. (6.611) using the mixture fraction and the progress variable [32, 49],

ψ = gψ(Z,C). (6.620)

As shown in Fig. 6.62a and Fig. 6.62b, the FPV model represents relaxation to a steady
S-curve in state space while the SLFM represents projection onto a steady S-curve.
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(a) SLFM. (b) FPV.

Figure 6.62 Steady laminar flamelet model (a) corresponds to vertical
projection onto the S-curve in state-space, while FPV model (b) relaxes to
a steady S-curve.

6.7. Turbulent Premixed Combustion Models

To use flamelet models for premixed combustion, we introduce a progress variable C
that is defined by the normalized temperature,

C =
T − Tu
Tb − Tu

. (6.71)

In the limit that the flame is infinitely thin, we can represent the distribution of C as,

P (C) = βδ(C) + (1− β)δ(1− C). (6.72)

The transport equation for the C̃ follows then as,

ρ∂tC̃ + ρũ · ∇C̃ = ∇ · (ρα∇C̃) +∇ · (ρu′′C ′′) + ṁC . (6.73)

A conventional model for the source term is,

ṁC = ρusLI0Σ (6.74)

with ρu the density in the unburned mixture, sL the laminar burning velocity, I0 the stretch,
Σ flame surface density (flame surface per unit volume). Algebraic model for Σ,

Σ ∼ C̃(1− C̃)

L̃y
, (6.75)

with L̃y the crossing length scale. The transport equation for Σ can be obtained,

∂tΣ +∇ · (ũΣ) = ∇ · (ραt∇Σ) + C1
ε

k
Σ− C2sL

Σ2

1− C (6.76)
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Unburned
C = 0

Burned
  C = 1

Figure 6.71 Definition of the progress variable.

Other models include the Coherent Flame Model – however, this model does not contain
any information about chemistry.

6.7.1. Level Set Equation for Premixed Flames. We now introduce a distance func-
tion G(x, t) that defines distance to the flame. Note that we take G(xF , t) = G0. The
conservation equation for G can be written as,

DtG = 0. (6.77)

From the kinematic balance at the flame front, we have,

dx

dt
= u+ sL · n̂; n̂ = − ∇G|∇G| , (6.78)

upon rearranging, we have,

DtG = sL|∇G|, (6.79)

which is a purely kinematic equation. Note that the influence of chemistry is introduced
through sL, and that sL depends on strain, curvature, Lewis number, and other hydrody-
namic and mixture parameters.
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Unburned Burned

Figure 6.72 Definition of the level-set variable G.

At this point, we proceed to analysis of the regime diagram for turbulent combustion.
As shown in Fig. 6.73, there exist several key combustion regimes:

• Laminar flame: Re < 1
• Wrinkled flame: u′ < sL: In this case, the turn-over velocity u′ of the largest

eddies is not large enough to compete with the advancement of eddies of the flame
front at the laminar burning velocity. This regime is not relevant for practical
applications.

• Broken reaction zone: only present in the limit of high u′/sL
• Corrugated flamelet regime: u′ > Sc, Re > 1, Kaδ < 1, with Ka = τF/tη → lF <
η. In this regime, the entire reactive-diffusive structure of length scale lF is embed-
ded within eddies of size η. The flame is not perturbed by turbulent fluctuations
and remains quasi-steady. Note that if lF ∼ η, the flame will transition from the
corrugated regime to the thin reaction zone regime. The lF = η equivalency is
known as the Klimov-Williams condition.

• Thin Reaction Zone Regime: Re > 1, Kaδ < 1, Ka < 1. The fact that Ka < 1
implies that the smallest eddies of size η can enter into the reactive-diffusive flame
structure since η < lF. The smallest eddies, however, are still larger than the inner
layer thickness lF such that η < lδ ≡ lF. In this case, there is no penetration into
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Figure 6.73 Regime diagram for turbulent combustion.

the inner layer, and only broadening of the flame structure occurs as a result of
turbulence.

Given these different combustion regimes, it is now useful to consider several different models
for premixed turbulent flames. The first of these is the G-Equation, which is defined as
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Flame Front

Figure 6.74 Schematic of the corrugated flamelet regime.

Flame Front

Figure 6.75 Schematic of the thin reaction zone regime.

follows,

DtG = sL|∇G|. (6.710)

The burning velocity model,

sL = s0
L − s0

LMκ−Ms, (6.711)
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where the second right hand term is the curvature and the third right hand term is the
strain. The curvature is defined as,

κ = ∇ · n̂ = ∇ ·
(
− ∇G|∇G|

)
, (6.712)

the strain is,

s = −n̂ · ∇u · n̂ (6.713)

and the Markstein length M defines the effects of heat-release on flame location. To solve
this level set equation, we define G as a field variable using a signed distance function
|∇G| = 1. We can then solve the advection equation for G with a closure model for the
flame speed being dependent on the combustion regime.

Consider, for instance, the thin reaction zone regime. The temperature field evolves as,

ρDtT = ∇ · (ρα∇T ) + ρω̇T . (6.714)

meaning that the propagation of the isosurface T (x, t) = T0 is governed by,

∂tT +∇T · dx
dt

∣∣∣∣
T=T0

= 0 (6.715)

and its motion is defined as,

dx

dt

∣∣∣∣
T=T0

= u0 + n̂sd (6.716)

where the displacement speed is defined as,

sd =

∣∣∣∣∇ · (ρα∇T ) + ρω̇T
ρ|∇T |

∣∣∣∣
T0

, (6.717)

and

n̂ = − ∇T|∇T |

∣∣∣∣
T=T0

. (6.718)

In this case, the G-Equation closure is,

DtG =

[∇ · (ρα∇T ) + ρω̇T
ρ|∇T |

]
|∇G| (6.719)

By splitting the displacement speed into normal and tangential components, we obtain,

∇ · (ρα∇T ) = −ρα|∇T |∇ · n̂+ n̂ · ∇(ραn̂ · ∇T ) (6.720)

which gives,

DtG = (sn + sr)|∇G| − ακ|∇G| (6.721)



120 6. TURBULENT COMBUSTION MODELING

By normalizing the G-Equation with the Kolmogorov scaling,

t∗ =
t

tη
; x∗ =

x

η
; u∗ =

u

uη
; (6.722)

κ∗ = κη; ∇∗ = η∇ (6.723)

we obtain the following with sL,s = sn + sr,

∂t∗G+ u∗ · ∇∗G =
sL,s
uη
|∇∗G| − α

ν
κ∗|∇∗G| (6.724)

For the thin reaction zone regime sL,s < uη, and for the corrugated regime s0
L > uη. Thus,

the leading order model equation for both regimes becomes,

ρ∂tG+ ρu · ∇G = (ρs0
L)σ − (ρα)κσ; σ = |∇G| (6.725)

The closure for RANS/LES is obtained by presumed PDF-Model:

σ(x, t) =

∫ ∞
−∞

GP (G, x, t)dG (6.726)

G′2(x, t) =

∫ ∞
−∞

[G−G]2P (G, x, t)dG, (6.727)

which gives,

ρ∂tG̃+ ρũ · ∇G̃+∇ · (ρu′′G′′) = (ρs0
L)σ − (ρα)κσ (6.728)
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ME471DemoNotebook

June 7, 2017

In [1]: from __future__ import print_function

import cantera as ct
import cantera
import numpy as np
import matplotlib.pylab as plt
import sys,os
import pandas as pd
%matplotlib inline

In [84]: def compute_flame_speed_and_sensitivities(gs):
# Simulation parameters

width = 0.03 # m
initial_grid = [0.0,0.001,0.01,0.015,0.02,0.029,0.03]

# Flame object
f = ct.FreeFlame(gs)
f.set_refine_criteria(ratio=2, slope=0.1, curve=0.14)
f.solve(loglevel=1, refine_grid=True ,auto=True)

# Use the adjoint method to calculate sensitivities
sens = f.get_flame_speed_reaction_sensitivities()
return f, sens

def print_sensitivities(gs, sns):
print('Rxn # k/S*dS/dk Reaction Equation')
print('----- ---------- ----------------------------------')
for m in range(gs.n_reactions):

print('{: 5d} {: 10.3e} {}'.format(
m, sns[m], gs.reaction_equation(m)))

def print_flame_speed(sl):
flsp = sl.u[0]
print('Flame speed: %f ' % (flsp))
return flsp

1
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def print_gas_params(gs):
TPX = gs.TPX
gs.equilibrate('HP', solver='gibbs')
t_ad = gs.T
cp_ad = gs.cp_mass
gs.TPX = TPX
phi = (gs.mole_fraction_dict()['CH4']/gs.mole_fraction_dict()['O2'])/0.5
print('CH4 mole fraction: %f' % gs.mole_fraction_dict()['CH4'])
print('O2 mole fraction: %f' % gs.mole_fraction_dict()['O2'])
print('N2 mole fraction: %f' % gs.mole_fraction_dict()['N2'])
print('Equivalence ratio: %f' % phi)
print('Unburned specific heat capacity: %f' % gs.cp_mass)
print('Burned specific heat capacity: %f' % cp_ad)
print('Adiabatic flame temperature: %f' % t_ad)

def get_x_vec(ky,fs):
return fs.X[fs.gas.species_index(ky)]

def get_y_vec(ky,fs):
return fs.Y[fs.gas.species_index(ky)]

def get_mw(ky,fs):
return fs.gas.molecular_weights[fs.species_index(ky)]

def print_sensitivities(gs):
print()
print('Rxn # k/S*dS/dk Reaction Equation')
print('----- ---------- ----------------------------------')
for m in range(gs.n_reactions):

print('{: 5d} {: 10.3e} {}'.format(
m, sens[m], gs.reaction_equation(m)))

def norm_vec(vc):
return [v/max(vc) for v in vc ]

In [72]: #Computing flame speed
p = ct.one_atm # pressure [Pa]
Tin = 300.0 # unburned gas temperature [K]
mech = '/home/jdunnmon/Research/Mechanisms/gri30/grimech30.cti'
gas_obj = ct.Solution(mech,'gas')

reactants = 'CH4:0.5, O2:1, N2:3.76'
gas_obj.transport_model = 'Mix'
gas_obj.TPX = Tin, p, reactants
print_gas_params(gas_obj)

CH4 mole fraction: 0.095057
O2 mole fraction: 0.190114

2
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N2 mole fraction: 0.714829
Equivalence ratio: 1.000000
Unburned specific heat capacity: 1077.338911
Burned specific heat capacity: 1514.344414
Adiabatic flame temperature: 2225.524583

In [73]: sol, sens = compute_flame_speed_and_sensitivities(gas_obj)

************ Solving on 6 point grid with energy equation enabled ************

...
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 2.136e-05 4.337
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 0.0005474 2.871
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 0.002338 3.919
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 5.852e-05 5.895
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 2.083e-05 6.13
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 0.0003559 4.887
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 0.009121 3.422
Attempt Newton solution of steady-state problem... failure.
Take 10 timesteps 0.1558 2.308
Attempt Newton solution of steady-state problem... success.

Problem solved on [7] point grid(s).

...
grid refinement disabled.

******************** Solving with grid refinement enabled ********************

In [74]: print('Flame speed = %f' % (sol.u[0]))

Flame speed = 0.379667

In [83]: zz = sol.flame.grid-0.03
#Plotting
plt.figure(figsize=[6,4])
plt.plot(zz,sol.T/1000,'k-',label='T/1000')
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plt.plot(zz,15*get_x_vec('CH4',sol),'b-',label='15$X_{CH_4}$')
plt.plot(zz,10*get_x_vec('O2',sol),'r-',label='10$X_{O_2}$')
plt.plot(zz,10*get_x_vec('CO',sol),'g-',label='10$X_{CO}$')
plt.plot(zz,100*get_x_vec('CH3',sol),'k--',label='100$X_{CH_3}$')
plt.xlabel('x, m', fontsize=12)
plt.ylabel('Flame Structure Quantities', fontsize=12)
plt.legend(loc='best')
plt.xlim([-0.003,0.003])
plt.ylim([-0.01, 2.3])
plt.title('Premixed Flame Structure', fontsize=12)
plt.savefig('./GraphImages/PremixedFlameFig.pdf')

4
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